
CSE 311: Foundations of Computing I

Topic 1: Propositional Logic



What is logic?

Logic is a language, like English or Java

Why learn another language?
We know English and Java already?



Why not use English?

– Turn right here…

– We saw her duck

– Buffalo buffalo Buffalo buffalo buffalo            
buffalo Buffalo buffalo

Natural languages can be unclear or imprecise

Does “right” mean the direction or now?

This means “Bison from Buffalo, that bison from Buffalo bully, themselves 
bully bison from Buffalo.

Does “duck” mean the animal or crouch down?



Why learn a new language?

We need a language of reasoning to 
– state sentences more precisely
– state sentences more concisely
– understand sentences more quickly

Formal logic has these properties



What is logic and why do we need it?

Logic is a language, like English or Java, with its own
• words and rules for combining words into sentences 

(syntax)
• ways to assign meaning to words and sentences 

(semantics)



Propositions: building blocks of logic

A proposition is a statement that 
– is “well-formed”
– is either true or false



Propositions: building blocks of logic

A proposition is a statement that 
– is “well-formed” 
– is either true or false

All cats are mammals
true

All mammals are cats
false



Are These Propositions?

2 + 2 = 5

x + 2 = 5389, where x is my PIN number

Akjsdf!

Who are you?

Every positive even integer can be written as the sum of 
two primes.

This is a proposition.  It’s okay for propositions to be false.

Not a proposition because it’s gibberish.

This is a question which means it doesn’t have a truth value.

This is a proposition.  We don’t know if it’s true or false, but we know it’s one of them!

This is a proposition.  We don’t need to know what x is.



Propositions

We need a way of talking about arbitrary ideas…

Propositional Variables: 𝑝, 𝑞, 𝑟, 𝑠, …

Truth Values:
–  T for true
–  F for false



Familiar from Java

Java boolean represents a truth value
– constants true and false
– variables hold unknown values

Operators calculate new values from given ones
– unary: not (!)
– binary: and (&&), or (||)



Logical Connectives

Negation (not)    ¬𝑝
Conjunction (and) 𝑝	 ∧ 	𝑞
Disjunction (or)     𝑝	 ∨ 	𝑞
Exclusive Or    𝑝⊕ 𝑞
Implication       𝑝 ⟶ 𝑟
Biconditional      𝑝 ⟷ 𝑟



Some Truth Tables
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Some Truth Tables

p ¬p
T F

F T

p q p Ù q
T T T

T F F

F T F
F F F

p q p Ú q
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T F T

F T T

F F F

p q p Å q
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Logic forces us to distinguish Ú from Å



Implication

“If it’s raining, then I have my umbrella”

It’s useful to think of implications as 
promises.  That is “Did I lie?”

p r p ® r

T T T

T F F

F T T

F F T

It’s raining It’s not raining

I have my 
umbrella

I do not have 
my umbrella



Implication

“If it’s raining, then I have my umbrella”

It’s useful to think of implications as 
promises.  That is “Did I lie?”

The only lie is when:
 (a) It’s raining AND
 (b) I don’t have my umbrella

p r p ® r

T T T

T F F

F T T

F F T

It’s raining It’s not raining

I have my 
umbrella No No

I do not have 
my umbrella Yes No



Implication

“If the Seahawks won, then I was at the 
game.”

What’s the one scenario where I lied?

p r p ® r

T T T

T F F

F T T

F F T

I was at the game I wasn’t at the game

Seahawks won

Seahawks lost



Implication

“If the Seahawks won, then I was at the 
game.”

What’s the one scenario where I lied?

p r p ® r

T T T

T F F

F T T

F F T

I was at the game I wasn’t at the game

Seahawks won Ok I lied

Seahawks lost Ok Ok



Implication

“If it’s raining, then I have my umbrella”

Are these true?

 2 + 2 = 4 ® earth is a planet

 2 + 2 = 5 ® 26 is prime

Implication is not a causal relationship!

p r p ® r

T T T

T F F

F T T

F F T

The fact that these are unrelated doesn’t make the statement false!  “2 + 2 = 
4” is true; “earth is a planet” is true.  T® T is true.  So, the statement is true.

Again, these statements may or may not be related.  “2 + 2 = 5” is false; so, 
the implication is true.  (Whether 26 is prime or not is irrelevant).



𝑝 → 𝑟

(1) “I have collected all 151 Pokémon if I am a Pokémon master”
(2) “I have collected all 151 Pokémon only if I am a Pokémon master”

In English, the “if” can be written at the end of the sentence
rather than at the beginning of the sentence (followed by a “,”).



𝑝 → 𝑟

(1) “I have collected all 151 Pokémon if I am a Pokémon master”
(2) “I have collected all 151 Pokémon only if I am a Pokémon master”

These sentences are implications in opposite directions:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1) If I am a Pokémon master, then I have collected all 151 Pokémon.
(2) If I have collected all 151 Pokémon, then I am a Pokémon master.



𝑝 → 𝑟

Implication:
– p implies r
– whenever p is true r must be true
– if p then r
– r if p
– p only if r
– p is sufficient for r
– r is necessary for p

p r p ® r

T T T

T F F

F T T

F F T



Biconditional:  𝑝 ↔ 𝑟

• p if and only if r 
• p “iff” r
– p and r have the same value truth value

p r p	«	r
T T T

T F F
F T F

F F T



A Compound Proposition (Practical Example)

“Show the notification to the user if its their 
second login or they’ve used it for two weeks and 
haven’t tried the feature X unless they did use 
the feature Y.”

Not at all clear what exactly this means!

Can use logic to understand exactly when to show it



A Compound Proposition (Silly Example)

“Garfield has black stripes if he is an orange cat 
and likes lasagna, and he is an orange cat or 
does not like lasagna”

We’d like to understand what this proposition means.



A Compound Proposition

“Garfield has black stripes if he is an orange cat 
and likes lasagna, and he is an orange cat or 
does not like lasagna”

We’d like to understand what this proposition means.

First find the simplest (atomic) propositions:
  𝑞	 “Garfield has black stripes”
  𝑟	 “Garfield is an orange cat”
  𝑠	 “Garfield likes lasagna”

 (q if (r and s)) and (r or (not s))



Logical Connectives

𝑞	 “Garfield has black stripes”
 𝑟	 “Garfield is an orange cat”
 𝑠	 “Garfield likes lasagna”

“Garfield has black stripes if he is an orange cat and likes 
lasagna, and he is an orange cat or does not like lasagna”

Negation (not)    ¬𝑝
Conjunction (and) 𝑝	 ∧ 	𝑞
Disjunction (or)     𝑝	 ∨ 	𝑞
Exclusive Or    𝑝⊕ 𝑞
Implication       𝑝 ⟶ 𝑟
Biconditional      𝑝 ⟷ 𝑟

(q if (r and s)) and (r or (not s))



Logical Connectives

𝑞	 “Garfield has black stripes”
 𝑟	 “Garfield is an orange cat”
 𝑠	 “Garfield likes lasagna”

“Garfield has black stripes if he is an orange cat and likes 
lasagna, and he is an orange cat or does not like lasagna”

Negation (not)    ¬𝑝
Conjunction (and) 𝑝	 ∧ 	𝑞
Disjunction (or)     𝑝	 ∨ 	𝑞
Exclusive Or    𝑝⊕ 𝑞
Implication       𝑝 ⟶ 𝑟
Biconditional      𝑝 ⟷ 𝑟

(q if (r and s)) and (r or (not s))

((r ∧ s) ⟶ q) ∧ (r ∨ ¬s) 



Analyzing the Garfield Sentence with a Truth Table

𝒒 𝒓 𝒔 (𝒓 ∧ 𝒔 ) → 𝒒 ∧ (𝒓 ∨ ¬𝒔)

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T



Analyzing the Garfield Sentence with a Truth Table

𝒒 𝒓 𝒔 𝒓 ∨ ¬𝒔 (𝒓 ∧ 𝒔) → 𝒒 (𝒓 ∧ 𝒔 ) → 𝒒 ∧ (𝒓 ∨ ¬𝒔)

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T



Analyzing the Garfield Sentence with a Truth Table

𝒒 𝒓 𝒔 ¬𝒔 𝒓 ∨ ¬𝒔 𝒓 ∧ 𝒔 (𝒓 ∧ 𝒔) → 𝒒 (𝒓 ∧ 𝒔 ) → 𝒒 ∧ (𝒓 ∨ ¬𝒔)

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T



Analyzing the Garfield Sentence with a Truth Table

𝒒 𝒓 𝒔 ¬𝒔 𝒓 ∨ ¬𝒔 𝒓 ∧ 𝒔 (𝒓 ∧ 𝒔) → 𝒒 (𝒓 ∧ 𝒔 ) → 𝒒 ∧ (𝒓 ∨ ¬𝒔)

F F F T T F T T

F F T F F F T F

F T F T T F T T

F T T F T T F F

T F F T T F T T

T F T F F F T F

T T F T T F T T

T T T F T T T T



Understanding Garfield Claim

Black Stripes Orange Likes Lasagna Claim

F F F T

F F T F

F T F T

F T T F

T F F T

T F T F

T T F T

T T T T

“Garfield has black stripes if he is an orange cat and likes 
lasagna, and he is an orange cat or does not like lasagna”

Propositional Logic makes clear exactly what is being claimed.



Formalization

Most problems come to us in English
– can be hard to understand (easy to misunderstand)

First step is to “formalize”
– translate into a precise, mathematical statement

Then, we can apply our full tool set tools…



Converse, Contrapositive

Implication:
p ® r

Converse: 
r ® p

Contrapositive:
¬r ® ¬p

Inverse: 
¬p ® ¬r

p ® r

r ® p
¬r ® ¬p

¬p ® ¬r

Consider
p: 6 is divisible by 2
r: 6 is divisible by 4 



Converse, Contrapositive

Implication:
p ® r

Converse: 
r ® p

Contrapositive:
¬r ® ¬p

Inverse: 
¬p ® ¬r

p ® r F
r ® p T

¬r ® ¬p F

¬p ® ¬r T

Consider
p: 6 is divisible by 2
r: 6 is divisible by 4 



Converse, Contrapositive

Implication:
p ® r

Converse: 
r ® p

How do these relate to each other?

Contrapositive:
¬r ® ¬p

Inverse: 
¬p ® ¬r

p r p ® r r ® p ¬p ¬r ¬p ® ¬r ¬r ® ¬p

T T

T F

F T

F F



Converse, Contrapositive

Implication:
p ® r

Converse: 
r ® p

An implication and its contrapositive 
have the same truth value!

Contrapositive:
¬r ® ¬p

Inverse: 
¬p ® ¬r

p r p ® r r ® p ¬p ¬r ¬p ® ¬r ¬r ® ¬p

T T T T F F T T

T F F T F T T F

F T T F T F F T

F F T T T T T T



Converse, Contrapositive

Implication:
p ® r

Converse: 
r ® p

An implication and its inverse 
do not have the same truth value!

Contrapositive:
¬r ® ¬p

Inverse: 
¬p ® ¬r

p r p ® r r ® p ¬p ¬r ¬p ® ¬r ¬r ® ¬p

T T T T F F T T

T F F T F T T F

F T T F T F F T

F F T T T T T T

Assuming they are the same is called the

“Fallacy of the Inverse”

https://en.wikipedia.org/wiki/Denying_the_antecedent


Application: Digital Circuits

Computing With Logic
– T  corresponds to 1 or “high” voltage 
– F  corresponds to 0 or “low” voltage

Gates 
– Take inputs and produce outputs (functions)
– Several kinds of gates
– Correspond to propositional connectives (most 

of them)



Last class: AND, OR, NOT Gates

p q p Ù q

T T T

T F F

F T F

F F F

p q OUT

1 1 1

1 0 0
0 1 0

0 0 0

AND Gate
p

OUTANDq

OR Gate p q OUT

1 1 1

1 0 1

0 1 1
0 0 0

p
OUTORq

p q p Ú q

T T T

T F T

F T T

F F F

NOT Gate p OUT

1 0

0 1
p OUTNOT

p ¬ p

T F

F T



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Values get sent along wires connecting gates 

NOT

OR

AND

AND

NOT

p

q

r
s

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT



Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

𝑝 ∧ ¬𝑞	 ∨ (¬𝑞 ∧ 𝑟)



Other Useful Gates

NAND
  ¬(𝑝 ∧ 𝑞)

NOR
  ¬(𝑝 ∨ 𝑞)

XOR
  𝑝⊕ 𝑞

XNOR
   𝑝 ↔ 𝑞

p
q out

p q out
0 0 1
0 1 1
1 0 1
1 1 0

p q out
0 0 1
0 1 0
1 0 0
1 1 0

out
p
q

p
q out

p q out
0 0 1
0 1 0
1 0 0
1 1 1

p q out
0 0 0
0 1 1
1 0 1
1 1 0

outp
q



Boolean Algebra

• Usual notation used in circuit design

• Boolean algebra  
– a set of elements B containing {0, 1}
– binary operations { + , • }
– and a unary operation { a’ } or { )𝑎 }

 

Write these in Boolean Algebra:



Boolean Algebra

• Usual notation used in circuit design

• Boolean algebra  
– a set of elements B containing {0, 1}
– binary operations { + , • }
– and a unary operation { a’ } or { )𝑎 }

 

𝑝𝑞! + 𝑞!𝑟𝑝′𝑞′(𝑟 + 𝑠)

Write these in Boolean Algebra:



Warm-up Exercise

• Create a Boolean Algebra expression for 𝐶 below 
in terms of the variables 𝒂 and 𝒃

𝒂 𝒃 𝑪(𝒂, 𝒃)
1 1 0

1 0 1

0 1 1

0 0 0

𝐶 = (𝑎 + 𝑏)(𝑎𝑏)′

How do we do this with many variables?
Would be nice to have a mechanical way to do it! (More later…)

Note that
we have
only +, *
(not XOR)



Warm-up Exercise

• Create a Boolean Algebra expression for 𝐶 below 
in terms of the variables 𝒂 and 𝒃

• Draw this as a circuit (using AND, OR, NOT)

𝐶 = (𝑎 + 𝑏)(𝑎𝑏)′

Correspondence between logic (propositions) and computation (circuits).
This isn’t the last time we will see such connections…



A Combinational Logic Example

Sessions of Class: 
We would like to compute the number of lectures or 
quiz sections remaining at the start of a given day of 
the week.

– Inputs:  Day of the Week, Lecture/Section flag
– Output:  Number of sessions left

Examples: Input:  (Wednesday, Lecture)  Output: 2
              Input:  (Monday, Section)        Output: 1
   



Implementation in Software
public int classesLeftInMorning(int weekday, boolean isLecture) {
    switch (weekday) {
        case SUNDAY:
        case MONDAY:
            return isLecture ? 3 : 1;
        case TUESDAY:
        case WEDNESDAY:
            return isLecture ? 2 : 1;
        case THURSDAY:
            return isLecture ? 1 : 1;
        case FRIDAY:
            return isLecture ? 1 : 0;
        case SATURDAY:
            return isLecture ? 0 : 0;
 }
}



Implementation with Combinational Logic

Encoding:
– How many bits for each input/output?
– Binary number for weekday
– One bit for each possible output

isLectureWeekday

0 1 2 3



Defining Our Inputs!

Weekday Number Binary
Sunday 0 (000)2
Monday 1 (001)2
Tuesday 2 (010)2

Wednesday 3 (011)2
Thursday 4 (100)2

Friday 5 (101)2
Saturday 6 (110)2

Weekday Input:
– Binary number for weekday
– Sunday = 0, Monday = 1, …
– We care about these in binary:



Converting to a Truth Table!

Weekday isLecture c0 c1 c2 c3
SUN 000 0
SUN 000 1
MON 001 0
MON 001 1
TUE 010 0
TUE 010 1
WED 011 0
WED 011 1
THU 100 -
FRI 101 0
FRI 101 1
SAT 110 -
- 111 -

case SUNDAY or MONDAY: 
 return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
 return isLecture ? 2 : 1;
case THURSDAY:
 return isLecture ? 1 : 1;
case FRIDAY:
 return isLecture ? 1 : 0;
case SATURDAY:
 return isLecture ? 0 : 0;



Converting to a Truth Table!

Weekday isLecture c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

case SUNDAY or MONDAY: 
 return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
 return isLecture ? 2 : 1;
case THURSDAY:
 return isLecture ? 1 : 1;
case FRIDAY:
 return isLecture ? 1 : 0;
case SATURDAY:
 return isLecture ? 0 : 0;



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 1)
Let’s begin by finding an expression 
for c3. To do this, we look at the rows
where c3 = 1 (true).



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 1)

DAY == SUN && L == 1

DAY == MON && L == 1



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 1)

d2d1d0 == 000 && L == 1

d2d1d0 == 001 && L == 1

Substituting DAY for the 
binary representation.



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 1)

d2 == 0 && d1 == 0 && d0 == 0 && L == 1

d2 == 0 && d1 == 0 && d0 == 1 && L == 1

Splitting up the bits of the day; 
so, we can write a formula.



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 1)

d2’•d1’•d0’•L

d2’•d1’•d0•L

Replacing with 
Boolean Algebra…



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 1)

d2’•d1’•d0’•L

d2’•d1’•d0•L

How do we combine them?



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 1)

d2’•d1’•d0’•L

d2’•d1’•d0•L

Either situation causes c3 to be 
true. So, we “or” them. 

c3 = d2’•d1’•d0’•L + 
d2’•d1’•d0•L



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 2)

Now, we do c2.

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 3)
Now, we do c1:

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L
c2 = d2’•d1•d0’•L + d2’•d1•d0•L



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 3)
Now, we do c1:

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

d2’•d1’•d0’•L’

d2’•d1’•d0•L’

c2 = d2’•d1•d0’•L + d2’•d1•d0•L

d2’•d1•d0’•L’

d2’•d1•d0•L’

d2•d1’•d0•L

???



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 3)
Now, we do c1:

d2’•d1’•d0’•L’

d2’•d1’•d0•L’

d2’•d1•d0’•L’

d2’•d1•d0•L’

d2•d1’•d0•L

d2•d1’•d0’

No matter what L is, 
we always say it’s 1.  
So, we don’t need L 
in the expression.

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L
c2 = d2’•d1•d0’•L + d2’•d1•d0•L



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 3)
Now, we do c1:

d2’•d1’•d0’•L’

d2’•d1’•d0•L’

d2’•d1•d0’•L’

d2’•d1•d0•L’

d2•d1’•d0•L

d2•d1’•d0’

c1 = d2’•d1’•d0’•L’ + d2’•d1’•d0•L’ + d2’•d1•d0’•L’ + d2’•d1•d0•L’ + d2•d1’•d0’ + d2•d1’•d0•L

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L
c2 = d2’•d1•d0’•L + d2’•d1•d0•L



d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0
- 111 - 1 0 0 0

Truth Table to Logic (Part 4)

Finally, we do c0:

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

c2 = d2’•d1•d0’•L + d2’•d1•d0•L

d2•d1’•d0•L’

d2•d1•d0

d2•d1•d0’

c1 = d2’•d1’•d0’•L’ + d2’•d1’•d0•L’ +
d2’•d1•d0’•L’ + d2’•d1•d0•L’ +
d2•d1’•d0’ + d2•d1’•d0•L



Truth Table to Logic (Part 4)

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

c2 = d2’•d1•d0’•L + d2’•d1•d0•L

c1 = d2’•d1’•d0’•L’ + d2’•d1’•d0•L’ + d2’•d1•d0’•L’ + d2’•d1•d0•L’ + d2•d1’•d0’ + d2•d1’•d0•L

c0 = d2•d1’•d0•L’ + d2•d1•d0’ + d2•d1•d0

d2

d1

d0

L

NOT

NOT

NOT

OR

AND

AND

Here’s c3 as a circuit:



¬, Ù, Ú can implement any Boolean function!
no need for XOR, XNOR, etc.

Why? Because this construction only uses ¬, Ù, Ú
works for any boolean function

Important Corollary of this Construction



General Computing from Other Gates

A theoretical example…



Canonical Forms

• Truth table is the unique signature of a 0/1 function

•  The same truth table can have many circuit realizations
–  many ways to compute the same thing

•  Can we choose a circuit so same table ® same circuit?

•  Yes: Canonical forms
–  standard forms as a Boolean expression (circuit)
–  we all produce the same expression



Sum-of-Products Canonical Form

• AKA Disjunctive Normal Form (DNF)
• AKA Minterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

001

011

101
110
111

A’B’C

A’BC

AB’C
ABC’
ABC

F

F= A’B’C + A’BC + AB’C + ABC’ + ABC’

Read T rows off
 truth table

Convert to
Boolean Algebra

Add the minterms together

1 2

3



Sum-of-Products Canonical Form

Product term (or minterm)
– ANDed product of literals – input combination for which output is true
– each variable appears exactly once, true or inverted (but not both)

A B C minterms
0 0 0 A’B’C’
0 0 1 A’B’C
0 1 0 A’BC’
 0 1 1 A’BC
1 0 0 AB’C’
1 0 1 AB’C
1 1 0 ABC’
1 1 1 ABC

F in canonical form:
 F(A, B, C) = A’B’C + A’BC + AB’C + ABC’ + ABC



Product-of-Sums Canonical Form

• AKA Conjunctive Normal Form (CNF)
• AKA Maxterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

F

F =  

Read F rows off
 truth table

Negate all
bits

Multiply the maxterms together

1 2

4

Convert to
Boolean Algebra

3



Product-of-Sums Canonical Form

• AKA Conjunctive Normal Form (CNF)
• AKA Maxterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

000

010

100

F

F = (A + B + C)(A + B’ + C)(A’ + B + C)

111

101

011

A + B + C

A + B’ + C

A’ + B + C

Read F rows off
 truth table

Negate all
bits

Multiply the maxterms together

1 2

4

Convert to
Boolean Algebra

3



Product-of-Sums: Why does this procedure work?

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Useful Facts:
• We know (F’)’ = F
• We know how to get a minterm expansion for F’

F’ = A’B’C’ + A’BC’ + AB’C’



Product-of-Sums: Why does this procedure work?

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Useful Facts:
• We know (F’)’ = F
• We know how to get a minterm expansion for F’

F’ = A’B’C’ + A’BC’ + AB’C’
Taking the complement of both sides…

(F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
And using DeMorgan/Comp.…

F = (A’B’C’)’  (A’BC’)’  (AB’C’)’

F = (A + B + C)(A + B’ + C)(A’ + B + C)



Product-of-Sums Canonical Form

Sum term (or maxterm)
– ORed sum of literals – input combination for which output is false
– each variable appears exactly once, true or inverted (but not both)

A B C maxterms
0 0 0 A+B+C
0 0 1 A+B+C’
0 1 0 A+B’+C
0 1 1 A+B’+C’
1 0 0 A’+B+C
1 0 1 A’+B+C’
1 1 0 A’+B’+C
1 1 1 A’+B’+C’

F in canonical form:
 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)



Mapping Truth Tables to Logic Gates

Given a truth table:
1. Write the output in a table
2. Write the Boolean expression
3. Draw as gates
4. Map to available gates

A B C    F
0 0 0    0
0 0 1    0
0 1 0    1
0 1 1    1
1 0 0    0
1 0 1    1
1 1 0    0
1 1 1    1

This will give us some circuit.
But is it the best circuit?


