Quiz Section 7: Induction, Regular Expressions

Task 1 - Walk the Dawgs

Suppose that a dog walker takes care of $n \geqslant 12$ dogs. The dog walker is not a strong person, and will walk dogs in groups of 3 or 7 at a time (every dog gets walked exactly once). Prove that the dog walker can always split the n dogs into groups of 3 dogs or 7 dogs.

Task 2 - Seeing double
Consider the following recursive definition of strings.
Basis Step: " " is a string
Recursive Step: If X is a string and c is a character then append (c, X) is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\operatorname{len}(" ") & =0 \\
\operatorname{len}(\operatorname{append}(c, X)) & =1+\operatorname{len}(X)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\text { double("") } & =" " \\
\text { double(append }(c, X)) & =\operatorname{append}(c, \operatorname{append}(c, \text { double }(X))) .
\end{array}
$$

Prove that for every string X, len $(\operatorname{double}(X))=2 \operatorname{len}(X)$.

Task 3 - Leafy Trees

Consider the following definition of a (binary) Tree:

Basis Step: - is a Tree.

Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(L, R)) & =\operatorname{leaves}(L)+\operatorname{leaves}(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geqslant \operatorname{size}(T) / 2+1 / 2$ for all Trees T.

Task 4 - Reversing a Binary Tree

Consider the following definition of a Tree that has integer values at its nodes in which each node has at most two children.

Basis Step Nil is a Tree.
Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\operatorname{Tree}(x, L, R)$ is a Tree.
The sum function returns the sum of all elements in a Tree.

$$
\begin{array}{ll}
\operatorname{sum}(\operatorname{Nil}) & =0 \\
\operatorname{sum}(\operatorname{Tree}(x, L, R)) & =x+\operatorname{sum}(L)+\operatorname{sum}(R)
\end{array}
$$

The following recursively defined function produces the mirror image of a Tree.

$$
\begin{array}{ll}
\text { reverse }(\operatorname{Nil}) & =\mathrm{Nil} \\
\text { reverse }(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \operatorname{reverse}(R), \text { reverse }(L))
\end{array}
$$

Show that, for all Trees T that

$$
\operatorname{sum}(T)=\operatorname{sum}(\operatorname{reverse}(T))
$$

Task 5 - Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.
a) Binary strings of even length.
b) Binary strings not containing 10 .
c) Binary strings not containing 10 as a substring and having at least as many 1 s as 0 s .
d) Binary strings containing at most two 0 s and at most two 1 s .

