# Quiz Section 6: Ordinary, Strong, and Structural Induction 

## Task 1 - Midterm Review: Translation

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- $\operatorname{soy}(x)$ is true iff $x$ contains soy milk.
- whole $(x)$ is true iff $x$ contains whole milk.
- $\operatorname{sugar}(x)$ is true iff $x$ contains sugar
- decaf $(x)$ is true iff $x$ is not caffeinated.
- vegan $(x)$ is true iff $x$ is vegan.
- RobbieLikes $(x)$ is true iff Robbie likes the drink $x$.

Translate each of the following statements into predicate logic. You may use quantifiers, the predicates above, and usual math connectors like $=$ and $\neq$.
a) Coffee drinks with whole milk are not vegan.
b) Robbie only likes one coffee drink, and that drink is not vegan.
c) There is a drink that has both sugar and soy milk.

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage of domain restriction.

$$
\forall x([\operatorname{decaf}(x) \wedge \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))
$$

## Task 2 - Casting Out Nines

Let $m \in \mathbb{N}$. This problem proves that if $9 \mid m$, then the sum of the digits of $m$ is a multiple of 9 . (It actually proves a bit more.) In order to state this one needs the base 10 representation of $m$. Write $m=\left(d_{n} d_{n-1} \cdots d_{1} d_{0}\right)_{10}$ where $d_{0}, \ldots, d_{n}$ are the base- 10 digits of $m$; that is, each $d_{0}, \ldots, d_{n} \in$ $\{0,1,2, \ldots, 9\}$ and $m=\sum_{i=0}^{n} d_{i} 10^{i}$.

Prove that casting out nines works for all $m \in \mathbb{N}$ by induction on the number of digits of $m$ by showing that $m$ and the sum of its digits are equivalent modulo 9 . We can write this using summation notation as: Prove that for all $n \in \mathbb{N}, \sum_{i=0}^{n} d_{i} 10^{i} \equiv \sum_{i=0}^{n} d_{i}(\bmod 9)$ for all $d_{0}, \ldots, d_{n} \in\{0,1,2, \ldots, 9\}$. (In other words, prove that for all $n \in \mathbb{N}$, for all $d_{0}, \ldots, d_{n} \in\{0,1,2, \ldots, 9\}$,

$$
d_{0}+10^{1} \cdot d_{1}+10^{2} \cdot d_{2}+\cdots+10^{n} \cdot d_{n} \equiv d_{0}+d_{1}+d_{2}+\cdots+d_{n} \quad(\bmod 9) .
$$

## Task 3 - In Harmony with Ordinary Induction

Define

$$
H_{i}=\sum_{j=1}^{i} \frac{1}{j}=1+\frac{1}{2}+\cdots+\frac{1}{i}
$$

The numbers $H_{i}$ are called the harmonic numbers.
Prove that $H_{2^{n}} \geqslant 1+\frac{n}{2}$ for all integers $n \geqslant 0$.

## Task 4 - Induction with Formulas

These problems are a little more abstract.
a) i. Show that given two sets $A$ and $B$ that $\overline{A \cup B}=\bar{A} \cap \bar{B}$. (Don't use induction.)
ii. Show using induction that for an integer $n \geqslant 2$, given $n$ sets $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ that

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n-1} \cup A_{n}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n-1}} \cap \overline{A_{n}}
$$

b) i. Show that given any integers $a, b$, and $c$, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)
ii. Show using induction that for any integer $n \geqslant 2$, given $n$ numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer $c$ such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right) .
$$

In other words, if a number divides each term in a sum then that number divides the sum.

## Task 5 - Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in year $n$ is described by the function $f(n)$ :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geqslant 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year $n$. That is, construct a formula for $f(n)$ and prove its correctness.

## Task 6 - Strong Induction

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.

