# CSE 311 Section 06

### **Induction & Midterm Review**

### **Announcements & Reminders**

- HW4 grades released
  - Regrade requests will be open shortly
- HW5 due Tomorrow at 11:00pm
- Midterm (5/08) at regular class time
  - Lecture A: 10:30-11:20
  - Lecture B: 13:30-14:20
  - Attend your assigned lecture
- Midterm review
  - Monday, May 6th 5:00-8:00PM SIG 134
  - Bring questions!!!!!
- Book One-on-Ones on the course homepage!

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all  $n \in N$  by induction on n

<u>Base Case:</u> Show P(b) is true.

<u>Inductive Hypothesis</u>: Suppose P(k) holds for an arbitrary  $k \ge b$ .

<u>Inductive Step:</u> Show P(k + 1) (i.e. get  $P(k) \rightarrow P(k + 1)$ )

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all  $n \in \mathbb{N}$  by induction on n

Note: often you will condition n here, like "all natural numbers n" or " $n \ge 0$ "

<u>Base Case:</u> Show P(b) is true.

<u>Inductive Hypothesis</u>: Suppose P(k) holds for an arbitrary  $k \ge b$ .

<u>Inductive Step:</u> Show P(k + 1) (i.e. get  $P(k) \rightarrow P(k + 1)$ )

<u>Conclusion</u>: Therefore, P(n) holds for all n by the principle of induction. Match the earlier condition on n in your conclusion!

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all  $n \in N$  by induction on



<u>Base Case:</u> Show P(b) is true.

<u>Inductive Hypothesis</u>: Suppose P(k) holds for an arbitrary  $k \ge b$ .

<u>Inductive Step:</u> Show P(k + 1) (i.e. get  $P(k) \rightarrow P(k + 1)$ )

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all  $n \in N$  by induction on

P(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

<u>Base Case:</u> Show P(b) is true.



<u>Inductive Hypothesis</u>: Suppose P(k) holds for an arbitrary  $k \ge b$ .

<u>Inductive Step:</u> Show P(k + 1) (i.e. get  $P(k) \rightarrow P(k + 1)$ )

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all  $n \in N$  by induction on

P(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

<u>Base Case</u>: Show P(b) is true.



<u>Inductive Hypothesis:</u> Suppose P(k) holds for an arbitrary  $k \ge b$ .

Inductive Step: Show P(k + 1) (i.e. get  $P(k) \rightarrow P(l + 1)$ ) START WITH LHS OF K + 1 ONLY AND WORK TOWARD RHS

### Weak Induction w/ Number Theory



i. Show that given any integers a, b, and c, if  $c \mid a$  and  $c \mid b$ , then  $c \mid (a+b)$ . (Don't use induction.)

i. Show that given any integers a, b, and c, if  $c \mid a$  and  $c \mid b$ , then  $c \mid (a+b)$ . (Don't use induction.)

Let a, b, and c be **arbitrary integers** and suppose that c | a and c | b

... ... ... Since a, b, and c were **arbitrary**, the claim holds.

. . .

. . .

i. Show that given any integers a, b, and c, if  $c \mid a$  and  $c \mid b$ , then  $c \mid (a+b)$ . (Don't use induction.)

Let a, b, and c be **arbitrary integers** and suppose that c | a and c | b Then by the **Definition of Divides**, there exist integers j and k such that a=jc and b = kc

Since a, b, and c were **arbitrary**, the claim holds.

. . .

i. Show that given any integers a, b, and c, if  $c \mid a$  and  $c \mid b$ , then  $c \mid (a+b)$ . (Don't use induction.)

Let a, b, and c be **arbitrary integers** and suppose that  $c \mid a$  and  $c \mid b$ Then by the **Definition of Divides**, there exist integers j and k such that a=jc and b = kc Then a + b = jc + kc

... Since a, b, and c were **arbitrary**, the claim holds.

. . .

i. Show that given any integers a, b, and c, if  $c \mid a$  and  $c \mid b$ , then  $c \mid (a+b)$ . (Don't use induction.)

Let a, b, and c be **arbitrary integers** and suppose that  $c \mid a$  and  $c \mid b$ Then by the **Definition of Divides**, there exist integers j and k such that a=jc and b = kc Then a + b = jc + kcFactoring out a constant we find, c(j + k)

Since a, b, and c were **arbitrary**, the claim holds.

i. Show that given any integers a, b, and c, if  $c \mid a$  and  $c \mid b$ , then  $c \mid (a+b)$ . (Don't use induction.)

Let a, b, and c be **arbitrary integers** and suppose that  $c \mid a$  and  $c \mid b$ Then by the **Definition of Divides**, there exist integers j and k such that a=jc and b = kcThen a + b = jc + kcFactoring out a constant we find, c(j + k)

Since **j+k is an intege**r by definition we have c | (a + b)

Since a, b, and c were **arbitrary**, the claim holds.

ii. Show using induction that for any integer  $n \ge 2$ , given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , that

$$c \mid (a_1 + a_2 + \dots + a_{n-1} + a_n).$$

In other words, if a number divides each term in a sum then that number divides the sum.

ii. Show using induction that for any integer  $n \ge 2$ , given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , that

 $c \mid (a_1 + a_2 + \dots + a_{n-1} + a_n).$ 

Let P(n) be "given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , it holds that  $c \mid (a_1 + a_2 + \cdots + a_n)$ ." We show P(n) holds for all integer  $n \ge 2$  by induction on n.

ii. Show using induction that for any integer  $n \ge 2$ , given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , that

 $c \mid (a_1 + a_2 + \dots + a_{n-1} + a_n).$ 

Let P(n) be "given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , it holds that  $c \mid (a_1 + a_2 + \cdots + a_n)$ ." We show P(n) holds for all integer  $n \ge 2$  by induction on n.

**Base Case:** P(2) says that given two integers  $a_1$  and  $a_2$ , for any integer c such that  $c \mid a_1$  and  $c \mid a_2$  it holds that  $c \mid (a_1 + a_2)$ . This is exactly part (a) so P(2) holds.

**Conclusion:** P(n) holds for all integers  $n \ge 2$  by induction the principle of induction.

ii. Show using induction that for any integer  $n \ge 2$ , given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , that

 $c \mid (a_1 + a_2 + \dots + a_{n-1} + a_n).$ 

Let P(n) be "given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , it holds that  $c \mid (a_1 + a_2 + \cdots + a_n)$ ." We show P(n) holds for all integer  $n \ge 2$  by induction on n.

**Base Case:** P(2) says that given two integers  $a_1$  and  $a_2$ , for any integer c such that  $c \mid a_1$  and  $c \mid a_2$  it holds that  $c \mid (a_1 + a_2)$ . This is exactly part (a) so P(2) holds. **Inductive Hypothesis:** Suppose that P(k) holds for some arbitrary integer  $k \ge 2$ .

ii. Show using induction that for any integer  $n \ge 2$ , given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , that

 $c \mid (a_1 + a_2 + \dots + a_{n-1} + a_n).$ 

Let P(n) be "given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , it holds that  $c \mid (a_1 + a_2 + \cdots + a_n)$ ." We show P(n) holds for all integer  $n \ge 2$  by induction on n.

**Base Case:** P(2) says that given two integers  $a_1$  and  $a_2$ , for any integer c such that  $c \mid a_1$  and  $c \mid a_2$  it holds that  $c \mid (a_1 + a_2)$ . This is exactly part (a) so P(2) holds. **Inductive Hypothesis:** Suppose that P(k) holds for some arbitrary integer  $k \ge 2$ . **Inductive Step:** Let  $a_1, a_2, \ldots, a_k, a_{k+1}$  be k + 1 integers. Let c be arbitrary and suppose that  $c \mid a_i$  for  $i = 1, 2, \ldots, k + 1$ . Then we can write

 $a_1 + a_2 + \dots + a_k + a_{k+1} = (a_1 + a_2 + \dots + a_k) + a_{k+1}.$ 

**Conclusion:** P(n) holds for all integers  $n \ge 2$  by induction the principle of induction.

ii. Show using induction that for any integer  $n \ge 2$ , given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , that

 $c \mid (a_1 + a_2 + \dots + a_{n-1} + a_n).$ 

Let P(n) be "given n numbers  $a_1, a_2, \ldots, a_{n-1}, a_n$ , for any integer c such that  $c \mid a_i$  for  $i = 1, 2, \ldots, n$ , it holds that  $c \mid (a_1 + a_2 + \cdots + a_n)$ ." We show P(n) holds for all integer  $n \ge 2$  by induction on n.

**Base Case:** P(2) says that given two integers  $a_1$  and  $a_2$ , for any integer c such that  $c \mid a_1$  and  $c \mid a_2$  it holds that  $c \mid (a_1 + a_2)$ . This is exactly part (a) so P(2) holds. **Inductive Hypothesis:** Suppose that P(k) holds for some arbitrary integer  $k \ge 2$ . **Inductive Step:** Let  $a_1, a_2, \ldots, a_k, a_{k+1}$  be k + 1 integers. Let c be arbitrary and suppose that  $c \mid a_i$  for  $i = 1, 2, \ldots, k + 1$ . Then we can write

 $a_1 + a_2 + \dots + a_k + a_{k+1} = (a_1 + a_2 + \dots + a_k) + a_{k+1}.$ 

The sum  $a_1 + a_2 + \cdots + a_k$  has k terms and c divides all of them, meaning we can apply the inductive hypothesis. It says that  $c \mid (a_1 + a_2 + \cdots + a_k)$ . Since  $c \mid (a_1 + a_2 + \cdots + a_k)$  and  $c \mid a_{k+1}$ , by part (a) we have,

$$c \mid (a_1 + a_2 + \dots + a_k + a_{k+1}).$$

This shows P(k+1).

**Conclusion:** P(n) holds for all integers  $n \ge 2$  by induction the principle of induction.

## **Strong Induction**



a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction.

a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction.

Base Cases (n = 1, n = 2): (n = 1) $a(1) = 1 = 2 \cdot 1 - 1$ 

a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction. **Base Cases** (n = 1, n = 2): (n = 1)  $a(1) = 1 = 2 \cdot 1 - 1$  (n = 2)  $a(2) = 3 = 2 \cdot 2 - 1$ So, P(1) and P(2) hold.

a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction. Base Cases (n = 1, n = 2): (n = 1)  $a(1) = 1 = 2 \cdot 1 - 1$  (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ 

So, P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all integers  $1 \le j \le k$  for some arbitrary  $k \ge 2$ .

a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

```
Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all n \ge 1 by strong induction.
Base Cases (n = 1, n = 2):
(n = 1)
a(1) = 1 = 2 \cdot 1 - 1
```

(n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ 

Task 6

So, P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all integers  $1 \le j \le k$  for some arbitrary  $k \ge 2$ . **Inductive Step:** We will show P(k + 1) holds.

a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction. **Base Cases** (n = 1, n = 2): (n = 1)  $a(1) = 1 = 2 \cdot 1 - 1$  (n = 2)  $a(2) = 3 = 2 \cdot 2 - 1$ So, P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all integers  $1 \le j \le k$  for some arbitrary  $k \ge 2$ .

Inductive Step: We will show P(k+1) holds.

a(k+1) = 2a(k) - a(k-1) [Definition of a]

a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction. Base Cases (n = 1, n = 2):

(n = 1) $a(1) = 1 = 2 \cdot 1 - 1$ 

Task 6

(n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ 

So, P(1) and P(2) hold. Inductive Hypothesis: Suppose that P(j) is true for all integers  $1 \le j \le k$  for some arbitrary  $k \ge 2$ . Inductive Step:

We will show P(k+1) holds.

| a(k+1) = 2a(k) - a(k-1)      | [Definition of $a$ ]   |
|------------------------------|------------------------|
| = 2(2k - 1) - (2(k - 1) - 1) | [Inductive Hypothesis] |

a(1) = 1a(2) = 3

a(n) = 2a(n-1) - a(n-2) for  $n \ge 3$ 

Use strong induction to prove that a(n) = 2n - 1 for all  $n \ge 1$ .

Task 6

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction. **Base Cases** (n = 1, n = 2): (n=1) $a(1) = 1 = 2 \cdot 1 - 1$ (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ So, P(1) and P(2) hold. **Inductive Hypothesis:** 

Suppose that P(j) is true for all integers  $1 \le j \le k$  for some arbitrary  $k \ge 2$ .

**Inductive Step:** We will show P(k+1) holds.

> a(k+1) = 2a(k) - a(k-1)[Definition of a] = 2(2k-1) - (2(k-1) - 1)[Inductive Hypothesis] = 2k + 1[Algebra]

a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction. Base Cases (n = 1, n = 2): (n = 1)

 $a(1) = 1 = 2 \cdot 1 - 1$ (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ 

So, P(1) and P(2) hold. Inductive Hypothesis:

Suppose that P(j) is true for all integers  $1 \le j \le k$  for some arbitrary  $k \ge 2$ .

Inductive Step:

We will show P(k+1) holds.

 $\begin{aligned} a(k+1) &= 2a(k) - a(k-1) & [\text{Definition of } a] \\ &= 2(2k-1) - (2(k-1)-1) & [\text{Inductive Hypothesis}] \\ &= 2k+1 & [\text{Algebra}] \\ &= 2(k+1) - 1 & [\text{Algebra}] \end{aligned}$ 

So, P(k+1) holds.

a(1)=1 a(2)=3  $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$  Use strong induction to prove that a(n)=2n-1 for all  $n\geqslant 1.$ 

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all  $n \ge 1$  by strong induction. **Base Cases** (n = 1, n = 2): (n = 1)  $a(1) = 1 = 2 \cdot 1 - 1$  (n = 2)  $a(2) = 3 = 2 \cdot 2 - 1$ So, P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all integers  $1 \le j \le k$  for some arbitrary  $k \ge 2$ .

**Inductive Step:** We will show P(k + 1) holds.

$$\begin{split} a(k+1) &= 2a(k) - a(k-1) & [\text{Definition of } a] \\ &= 2(2k-1) - (2(k-1)-1) & [\text{Inductive Hypothesis}] \\ &= 2k+1 & [\text{Algebra}] \\ &= 2(k+1) - 1 & [\text{Algebra}] \end{split}$$

So, P(k+1) holds.

#### **Conclusion:**

Task 6

Therefore, P(n) holds for all integers  $n \ge 1$  by principle of strong induction.

### **Additional Weak Induction**



### Task 3

Define

$$H_i = \sum_{j=1}^{i} \frac{1}{j} = 1 + \frac{1}{2} + \dots + \frac{1}{i}$$

The numbers  $H_i$  are called the *harmonic* numbers. Prove that  $H_{2^n} \ge 1 + \frac{n}{2}$  for all integers  $n \ge 0$ . Define

$$H_i = \sum_{j=1}^{i} \frac{1}{j} = 1 + \frac{1}{2} + \dots + \frac{1}{i}$$

Task 3

The numbers  $H_i$  are called the *harmonic* numbers. Prove that  $H_{2^n} \ge 1 + \frac{n}{2}$  for all integers  $n \ge 0$ .

Let P(n) be " $H_{2^n} \ge 1 + \frac{n}{2}$ ". We will prove P(n) for all integers  $n \ge 0$  by induction.

**Base Case** (n = 0):  $H_{2^0} = H_1 = \sum_{j=1}^{1} \frac{1}{j} = 1 \ge 1 + \frac{0}{2}$ , so P(0) holds.

**Induction Hypothesis:** Assume that  $H_{2^k} \ge 1 + \frac{k}{2}$  for some arbitrary integer  $k \ge 0$ .



So P(k + 1) follows. Conclusion: P(n) holds for all integers  $n \ge 0$  by induction.

### **Midterm Review: Translation**



Let your domain of discourse be all coffee drinks. You should use the following predicates:

- soy(x) is true iff x contains soy milk.
- whole(*x*) is true iff *x* contains whole milk.
- sugar(x) is true iff x contains sugar

- decaf(x) is true iff x is not caffeinated.
- vegan(x) is true iff x is vegan.
- RobbieLikes(x) is true iff Robbie likes the drink x.
- Translate each of the following statements into predicate logic. You may use quantifiers, the predicates above, and usual math connectors like = and  $\neq$ .
- a) Coffee drinks with whole milk are not vegan
- b) Robbie only likes one coffee drink, and that drink is not vegan
- c) There is a drink that has both sugar and soy milk.

Work on this problem with the people around you.

a) Coffee drinks with whole milk are not vegan

- soy(x) is true iff x contains soy milk
- whole(x) is true iff x contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

a) Robbie only likes one coffee drink, and that drink is not vegan

a) Coffee drinks with whole milk are not vegan

 $\forall x (whole(x) \rightarrow \neg vegan(x))$ 

- soy(x) is true iff x contains soy milk
- whole(*x*) is true iff *x* contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

a) Robbie only likes one coffee drink, and that drink is not vegan

a) Coffee drinks with whole milk are not vegan  $\forall x (whole(x) \rightarrow \neg vegan(x))$ 

- soy(x) is true iff x contains soy milk
- whole(*x*) is true iff *x* contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

a) Robbie only likes one coffee drink, and that drink is not vegan  $\exists x \forall y (\text{RobbieLikes}(x) \land \neg \text{Vegan}(x) \land [\text{RobbieLikes}(y) \rightarrow x = y])$ 

a) Coffee drinks with whole milk are not vegan  $\forall x (whole(x) \rightarrow \neg vegan(x))$ 

- soy(x) is true iff x contains soy milk
- whole(x) is true iff x contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

a) Robbie only likes one coffee drink, and that drink is not vegan  $\exists x \forall y (\text{RobbieLikes}(x) \land \neg \text{Vegan}(x) \land [\text{RobbieLikes}(y) \rightarrow x = y])$ 

 $\operatorname{Or} \exists x (\operatorname{RobbieLikes}(x) \land \neg \operatorname{Vegan}(x) \land \forall y [\operatorname{RobbieLikes}(y) \rightarrow x = y])$ 

a) Coffee drinks with whole milk are not vegan  $\forall x (whole(x) \rightarrow \neg vegan(x))$ 

- soy(x) is true iff x contains soy milk
- whole(x) is true iff x contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

a) Robbie only likes one coffee drink, and that drink is not vegan  $\exists x \forall y (\text{RobbieLikes}(x) \land \neg \text{Vegan}(x) \land [\text{RobbieLikes}(y) \rightarrow x = y])$ 

 $\operatorname{Or} \exists x (\operatorname{RobbieLikes}(x) \land \neg \operatorname{Vegan}(x) \land \forall y [\operatorname{RobbieLikes}(y) \rightarrow x = y])$ 

a) There is a drink that has both sugar and soy milk.

 $\exists x (\operatorname{sugar}(x) \land \operatorname{soy}(x))$ 

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- soy(*x*) is true iff *x* contains soy milk.
- whole(*x*) is true iff *x* contains whole milk.
- sugar(x) is true iff x contains sugar

- decaf(x) is true iff x is not caffeinated.
- vegan(x) is true iff x is vegan.
- RobbieLikes(x) is true iff Robbie likes the drink x.

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage of domain restriction.

 $\forall x ([\operatorname{decaf}(x) \land \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$ 

#### Work on this problem with the people around you.

- soy(*x*) is true iff *x* contains soy milk
- whole(*x*) is true iff *x* contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

 $\forall x([\operatorname{decaf}(x) \land \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$ 

 $\forall x([\operatorname{decaf}(x) \land \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$ 

Every decaf drink that Robbie likes has sugar.

- soy(x) is true iff x contains soy milk
- whole(*x*) is true iff *x* contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

 $\forall x ([\operatorname{decaf}(x) \land \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$ 

Every decaf drink that Robbie likes has sugar.

- soy(x) is true iff x contains soy milk
- whole(*x*) is true iff *x* contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

Statements like "For every decaf drink, if Robbie likes it then it has sugar" are equivalent, but only partially take advantage of domain restriction.

### That's All, Folks!

Thanks for coming to section this week! Any questions?