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Announcements & Reminders

e HW4 grades released
o Regrade requests will be open shortly
e HWS5 due Tomorrow at 11:00pm
e Midterm (5/08) at regular class time
o Lecture A: 10:30-11:20
o Lecture B: 13:30-14:20
o Attend your assigned lecture
e Midterm review
o Monday, May 6th 5:00-8:00PM SIG 134
o Bring questions!!!!!
e Book One-on-Ones on the course homepage!



(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”.
We show P(n) holds for alln € N by induction on n

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

« ) . ”» Note: often you will
Let P(n) be “(whatevervyou’re trying to prove)”. y
(n) ( y yInstop ) conditionn here, like

We show P(n) holds for allm € N by induction on n «_| natural numbers n”
or‘n=> 0"

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.
Match the earlier condition onn in your conclusion!




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”. A Eg‘%'ﬁgggfg A%AJELLTE
We show P(n) holds for alln € N by induction o NOT A NUMERICAL ONE

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”. A Eg‘%f Qggfg A%AJELLTE

We show P(n) holds for alln € N by induction o NOT A NUMERICAL ONE

Base Case: Show P(b) is true. YOU MUST INTRODUCE
AN ARBITRARY
VARIABLE IN YOUR IH

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

» , : » P(n) IS A PREDICATE, IT
Let P(n) be “(whateveryou’re trying to prove)”. A Hg‘% A BOOLEAN VALUE
We show P(n) holds for alln € N by induction o NOT A NUMERICAL ONE

Base Case: Show P (D) is true. YOU MUST INTRODUCE
AN ARBITRARY
VARIABLE IN YOUR IH

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

START WITH LHS OF
K+ 1 ONLY AND WORK

Inductive Step: Show P(k + 1) (i.e. get P(k) - Pm TOWARD RHS

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




Weak Induction w/ Number Theory




Task 4b

i. Show that given any integers a, b, and ¢, if ¢ | a and ¢ | b, then ¢ | (a+b). (Don't use induction.)
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Task 4b

i. Show that given any integers a, b, and ¢, if ¢ | a and ¢ | b, then ¢ | (a+b). (Don't use induction.)

Let a, b, and c be arbitrary integers and suppose thatc|aandc|b

Then by the Definition of Divides, there exist integers j and k such that a=jc and b = kc
Thena+b=jc+kc

Factoring out a constant we find, c(j + k)

Since j+k is an integer by definition we have c | (a + b)

Since a, b, and c were arbitrary, the claim holds.



Task 4b

ii. Show using induction that for any integer n > 2, given n numbers ay,aq, ..., a,_1,ay,, for any
integer ¢ such that ¢ | a; for i = 1,2,...,n, that

Cl(a1+a2+"'+an_1+a7l).

In other words, if a number divides each term in a sum then that number divides the sum.



Task 4b

il. Show using induction that for any integer n = 2, given n numbers ay,as,...,an—1,a,, for any
integer ¢ such that ¢ | a; fori = 1,2,...,n, that

c|l(ar+az+ -+ an-1+ ay).
Let P(n) be “given n numbers a1, az,...,an—1,an, for any integer ¢ such that ¢ | a;
fori=1,2,...,n, it holds that ¢ | (a1 + a2 + - - - + a,).” We show P(n) holds for all
integer n > 2 by induction on n.

Conclusion: P(n) holds for all integers n > 2 by induction the principle of induction.



Task 4b

il. Show using induction that for any integer n = 2, given n numbers ay,as,...,an—1,a,, for any
integer ¢ such that ¢ | a; fori = 1,2,...,n, that

cl(ar+az+-+an_1+an).
Let P(n) be “given n numbers a1, az,...,an—1,an, for any integer ¢ such that ¢ | a;
fori=1,2,...,n, it holds that ¢ | (a1 + a2 + - - - + a,).” We show P(n) holds for all
integer n > 2 by induction on n.
Base Case: P(2) says that given two integers a1 and ag, for any integer ¢ such that
ay and ¢ | ag it holds that ¢ | (a1 + a2). This is exactly part (a) so P(2) holds.

(&

Conclusion: P(n) holds for all integers n > 2 by induction the principle of induction.
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ay and ¢ | ag it holds that ¢ | (a1 + a2). This is exactly part (a) so P(2) holds.
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Task 4b

il. Show using induction that for any integer n = 2, given n numbers ay,as,...,an—1,a,, for any
integer ¢ such that ¢ | a; fori = 1,2,...,n, that

c|l(ar+az+ -+ an-1+ ay).
Let P(n) be “given n numbers a1, az,...,an—1,an, for any integer ¢ such that ¢ | a;
fori=1,2,...,n, it holds that ¢ | (a1 + a2 + - - - + a,).” We show P(n) holds for all
integer n > 2 by induction on n.

Base Case: P(2) says that given two integers a1 and ag, for any integer ¢ such that
¢ | a; and ¢ | ag it holds that ¢ | (a1 + az). This is exactly part (a) so P(2) holds.
Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer k& > 2.

Inductive Step: Let ay,as,...,ar, a1 be k + 1 integers. Let ¢ be arbitrary and
suppose that ¢ | a; fori =1,2,...,k+ 1. Then we can write

a1 +az+ - +ag+agyr = (a1 +ag + -+ ag) + ags1.

Conclusion: P(n) holds for all integers n > 2 by induction the principle of induction.



Task 4b

il. Show using induction that for any integer n = 2, given n numbers ay,as,...,an—1,a,, for any
integer ¢ such that ¢ | a; fori = 1,2,...,n, that

c|l(ar+az+ -+ an-1+ ay).
Let P(n) be “given n numbers a1, az,...,an—1,an, for any integer ¢ such that ¢ | a;
fori =1,2,...,n, it holds that ¢ | (a1 + a2 + - - - + a,).” We show P(n) holds for all
integer n = 2 by induction on n.

Base Case: P(2) says that given two integers a1 and ag, for any integer ¢ such that
¢ | a; and ¢ | ag it holds that ¢ | (a1 + a2). This is exactly part (a) so P(2) holds.

Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer k& > 2.

Inductive Step: Let ay,as,...,a;, a1 be k + 1 integers. Let ¢ be arbitrary and
suppose that ¢ | a; fori =1,2,...,k+ 1. Then we can write

a1 +az+ - +ag+agy1r = (a1 +ag + -+ ag) + ags1.

The sum a; + az + - -+ + ax has k terms and ¢ divides all of them, meaning we

can apply the inductive hypothesis. It says that ¢ | (a1 + a2 + -+ + ag). Since

c| (a1 +az+---+ax) and ¢ | ax41, by part (a) we have,
cl(ap+as+ -+ ax + ags1).

This shows P(k + 1).
Conclusion: P(n) holds for all integers n > 2 by induction the principle of induction.



Strong Induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1

a(2) =3

TaSk 6 a(n) =2a(n—1) —a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.
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Base Cases (n = 1,n = 2):
(=1
a(l)=1=2-1-1
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Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 6 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(FE=1)
a(l)=1=2.1-1

(n=2)
a(2)=3=2-2-1

So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1

a(2) =3

TaSk 6 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(FE="1)
a(l)=1=2.1-1

(n=2)
a(2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 6 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(=1
a(l)=1=2.1-1

(n=2)
a(2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]
=22k—-1)—(2(k—-1)-1) [Inductive Hypothesis]



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 6 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(FE="1)
a(l)=1=2.1-1

(n=2)
a(2)=3=2.-2-1

So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]
=202k-1)—(2(k—-1)—-1) [Inductive Hypothesis]
=2k+1 [Algebra]



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 6 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(=1
a(l)=1=2-1-1

(n=2)
a(2)=3=2:2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]
=22k-1)—(2(k—-1)-1) [Inductive Hypothesis]
=2k+1 [Algebra]
=2(k+1)—1 [Algebra]

So, P(k + 1) holds.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 6 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n =1,n = 2):
(=1
a(l)=1=2-1-1

(n=2)
a(2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]
=22k—-1)—(2(k—-1)-1) [Inductive Hypothesis]
=2k+1 [Algebra]
=2(k+1)—1 [Algebra]

So, P(k + 1) holds.

Conclusion:
Therefore, P(n) holds for all integers n = 1 by principle of strong induction.



Additional Weak Induction




Task 3

Define

;1

k)

The numbers H; are called the harmonic numbers.

Prove that Hy» > 1 + 5 for all integers n > 0.



Define

Task 3

The numbers H; are called the harmonic numbers.
Prove that Hon > 1 + 5 for all integers n > 0.

Let P(n) be “Han =1+ §". We will prove P(n) for all integers n > 0 by induction.

Base Case (n =0): Hy = Hi =Y+ =1>1+ 3, so P(0) holds.

Induction Hypothesis: Assume that Hyr > 1 + % for some arbitrary integer k > 0.

kE+1
Induction Step: | Goal: Show Hyki1 > 1+ %

1
Hori1 = Z =
j=17
k 2k+1
1 1
= = e Z =
=19 kY
2k+1 1
e I 7 + Z - [Induction Hypothesis]
j=2k+4+1
S142 4ok, e [There are 2* terms in [2% + 1,2%"1] and each is at least W]
2k
=1+ 9 + 2k+1
>1+k+1>1+k+1
T2 BT 2

So P(k + 1) follows.

Conclusion: P(n) holds for all integers n > 0 by induction.

au 1
Hi:Z—,=1+§+---+,
=17

1

1



Midterm Review: Translation




Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following
predicates:

* soy(x) is true iff x contains soy milk. * decaf(x) is true iff x is not caffeinated.
* whole(x) is true iff x contains whole milk. ¢ vegan(x) is true iff x is vegan.
* sugar(x) is true iff x contains sugar * RobbielLikes(x) is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use
quantifiers, the predicates above, and usual math connectors like = and #.

a) Coffee drinks with whole milk are not vegan
b) Robbie only likes one coffee drink, and that drink is not vegan

c) There is a drink that has both sugar and soy milk.

Work on this problem with the people around you.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

a) Coffee drinks with whole milk are not vegan

a) Robbie only likes one coffee drink, and that drink is not vegan

a) There is a drink that has both sugar and soy milk.
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Problem 1 - Translation

a)

soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Coffee drinks with whole milk are not vegan

Vx(whole(x) = —wvegan(x))

Robbie only likes one coffee drink, and that drink is not vegan

dxVy(RobbieLikes(x) A —Vegan(x) A [RobbieLikes(y) = x = y])
Or dx(RobbieLikes(x) A = Vegan(x) A Vy[RobbieLikes(y) —» x = y])

There is a drink that has both sugar and soy milk.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

a) Coffee drinks with whole milk are not vegan

Vx(whole(x) = —wvegan(x))

a) Robbie only likes one coffee drink, and that drink is not vegan

dxVy(RobbieLikes(x) A —Vegan(x) A [RobbieLikes(y) = x = y])
Or dx(RobbieLikes(x) A = Vegan(x) A Vy[RobbieLikes(y) —» x = y])

a) There is a drink that has both sugar and soy milk.

Elx(sugar(x) A soy(x))



Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following
predicates:

* soy(x) is true iff x contains soy milk. * decaf(x) is true iff x is not caffeinated.
* whole(x) is true iff x contains whole milk. ¢ vegan(x) is true iff x is vegan.
* sugar(x) is true iff x contains sugar * RobbieLikes(x) is true iff Robbie likes the drink x.

Translate the following symbolic logic statementinto a (natural) English sentence.
Take advantage of domain restriction.

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))

Work on this problem with the people around you.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))

Every decaf drink that Robbie likes has sugar.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))

Every decaf drink that Robbie likes has sugar.

Statements like “For every decaf drink, if Robbie likes it then it has sugar” are
equivalent,but only partially take advantage of domain restriction.



That's All, Folks!

Thanks for coming to section this week!
Any questions?




