CSE 311 Section 06 ?

Induction \& Midterm Review

Announcements \& Reminders

- HW4 grades released
- Regrade requests will be open shortly
- HW5 due Tomorrow at 11:00pm
- Midterm (5/08) at regular class time
- Lecture A: 10:30-11:20
- Lecture B: 13:30-14:20
- Attend your assigned lecture
- Midterm review
- Monday, May 6th 5:00-8:00PM SIG 134
- Bring questions!!!!!
- Book One-on-Ones on the course homepage!

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)".
We show $P(n)$ holds for all $n \in \mathrm{~N}$ by induction on n

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1))$

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)".
We show $P(n)$ holds for all $n \in \mathrm{~N}$ by induction on n
Note: often you will condition n here, like "all natural numbers n " or " $n \geq 0$ "
Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1))$

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.
Match the earlier condition on n in your conclusion!

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all $n \in \mathrm{~N}$ by induction on 1

P(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1)$)

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all $n \in \mathrm{~N}$ by induction on

\triangle
YOU MUST INTRODUCE AN ARBITRARY VARIABLE IN YOUR IH
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1))$

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

(Weak) Induction Template

Let $P(n)$ be "(whatever you're trying to prove)". We show $P(n)$ holds for all $n \in \mathrm{~N}$ by induction on

P(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

Base Case: Show $P(b)$ is true.

\triangleYOU MUST INTRODUCE AN ARBITRARY VARIABLE IN YOUR IH
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.
Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P\left(\frac{1}{l}\right) \begin{aligned} & \text { START WITH LHS OF } \\ & \text { K+1 ONLY AND WORK } \\ & \text { TOWARD RHS }\end{aligned}$
Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

Weak Induction w/ Number Theory

Task 4b

i. Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)

Task 4b

i. Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.) Let a, b, and c be arbitrary integers and suppose that $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$

Since a, b, and c were arbitrary, the claim holds.

Task 4b

i. Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)

Let a, b, and c be arbitrary integers and suppose that $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$
Then by the Definition of Divides, there exist integers j and k such that $a=j c$ and $b=k c$

Since a, b, and c were arbitrary, the claim holds.

Task 4b

i. Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)

Let a, b, and c be arbitrary integers and suppose that $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$
Then by the Definition of Divides, there exist integers j and k such that $a=j c$ and $b=k c$ Then $\mathrm{a}+\mathrm{b}=\mathrm{jc}+\mathrm{kc}$

Since a, b, and c were arbitrary, the claim holds.

Task 4b

i. Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)

Let a, b, and c be arbitrary integers and suppose that $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$
Then by the Definition of Divides, there exist integers j and k such that $a=j c$ and $b=k c$
Then $\mathrm{a}+\mathrm{b}=\mathrm{jc}+\mathrm{kc}$
Factoring out a constant we find, $c(j+k)$
Since a, b, and c were arbitrary, the claim holds.

Task 4b

i. Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)

Let a, b, and c be arbitrary integers and suppose that $\mathrm{c} \mid \mathrm{a}$ and $\mathrm{c} \mid \mathrm{b}$
Then by the Definition of Divides, there exist integers j and k such that $a=j c$ and $b=k c$
Then $\mathrm{a}+\mathrm{b}=\mathrm{jc}+\mathrm{kc}$
Factoring out a constant we find, $c(j+k)$
Since $\mathbf{j}+\mathbf{k}$ is an integer by definition we have $\mathrm{c} \mid(\mathrm{a}+\mathrm{b})$
Since a, b, and c were arbitrary, the claim holds.

Task 4b

ii. Show using induction that for any integer $n \geqslant 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right)
$$

In other words, if a number divides each term in a sum then that number divides the sum.

Task 4b

ii. Show using induction that for any integer $n \geqslant 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right)
$$

Let $P(n)$ be "given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, it holds that $c \mid\left(a_{1}+a_{2}+\cdots+a_{n}\right)$." We show $P(n)$ holds for all integer $n \geqslant 2$ by induction on n.

Conclusion: $P(n)$ holds for all integers $n \geqslant 2$ by induction the principle of induction.

Task 4b

ii. Show using induction that for any integer $n \geqslant 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right)
$$

Let $P(n)$ be "given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, it holds that $c \mid\left(a_{1}+a_{2}+\cdots+a_{n}\right)$." We show $P(n)$ holds for all integer $n \geqslant 2$ by induction on n.
Base Case: $P(2)$ says that given two integers a_{1} and a_{2}, for any integer c such that $c \mid a_{1}$ and $c \mid a_{2}$ it holds that $c \mid\left(a_{1}+a_{2}\right)$. This is exactly part (a) so $P(2)$ holds.

Conclusion: $P(n)$ holds for all integers $n \geqslant 2$ by induction the principle of induction.

Task 4b

ii. Show using induction that for any integer $n \geqslant 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right)
$$

Let $P(n)$ be "given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, it holds that $c \mid\left(a_{1}+a_{2}+\cdots+a_{n}\right)$." We show $P(n)$ holds for all integer $n \geqslant 2$ by induction on n.
Base Case: $P(2)$ says that given two integers a_{1} and a_{2}, for any integer c such that
$c \mid a_{1}$ and $c \mid a_{2}$ it holds that $c \mid\left(a_{1}+a_{2}\right)$. This is exactly part (a) so $P(2)$ holds.
Inductive Hypothesis: Suppose that $P(k)$ holds for some arbitrary integer $k \geqslant 2$.

Conclusion: $P(n)$ holds for all integers $n \geqslant 2$ by induction the principle of induction.

Task 4b

ii. Show using induction that for any integer $n \geqslant 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right) .
$$

Let $P(n)$ be "given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, it holds that $c \mid\left(a_{1}+a_{2}+\cdots+a_{n}\right)$." We show $P(n)$ holds for all integer $n \geqslant 2$ by induction on n.
Base Case: $P(2)$ says that given two integers a_{1} and a_{2}, for any integer c such that $c \mid a_{1}$ and $c \mid a_{2}$ it holds that $c \mid\left(a_{1}+a_{2}\right)$. This is exactly part (a) so $P(2)$ holds.
Inductive Hypothesis: Suppose that $P(k)$ holds for some arbitrary integer $k \geqslant 2$.
Inductive Step: Let $a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}$ be $k+1$ integers. Let c be arbitrary and suppose that $c \mid a_{i}$ for $i=1,2, \ldots, k+1$. Then we can write

$$
a_{1}+a_{2}+\cdots+a_{k}+a_{k+1}=\left(a_{1}+a_{2}+\cdots+a_{k}\right)+a_{k+1} .
$$

Conclusion: $P(n)$ holds for all integers $n \geqslant 2$ by induction the principle of induction.

Task 4b

ii. Show using induction that for any integer $n \geqslant 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right) .
$$

Let $P(n)$ be "given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, it holds that $c \mid\left(a_{1}+a_{2}+\cdots+a_{n}\right)$." We show $P(n)$ holds for all integer $n \geqslant 2$ by induction on n.
Base Case: $P(2)$ says that given two integers a_{1} and a_{2}, for any integer c such that $c \mid a_{1}$ and $c \mid a_{2}$ it holds that $c \mid\left(a_{1}+a_{2}\right)$. This is exactly part (a) so $P(2)$ holds.
Inductive Hypothesis: Suppose that $P(k)$ holds for some arbitrary integer $k \geqslant 2$.
Inductive Step: Let $a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}$ be $k+1$ integers. Let c be arbitrary and suppose that $c \mid a_{i}$ for $i=1,2, \ldots, k+1$. Then we can write

$$
a_{1}+a_{2}+\cdots+a_{k}+a_{k+1}=\left(a_{1}+a_{2}+\cdots+a_{k}\right)+a_{k+1} .
$$

The sum $a_{1}+a_{2}+\cdots+a_{k}$ has k terms and c divides all of them, meaning we can apply the inductive hypothesis. It says that $c \mid\left(a_{1}+a_{2}+\cdots+a_{k}\right)$. Since $c \mid\left(a_{1}+a_{2}+\cdots+a_{k}\right)$ and $c \mid a_{k+1}$, by part (a) we have,

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{k}+a_{k+1}\right) .
$$

This shows $P(k+1)$.
Conclusion: $P(n)$ holds for all integers $n \geqslant 2$ by induction the principle of induction.

Strong Induction

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

$$
\text { Use strong induction to prove that } a(n)=2 n-1 \text { for all } n \geqslant 1 \text {. }
$$

Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

$$
\text { Use strong induction to prove that } a(n)=2 n-1 \text { for all } n \geqslant 1 \text {. }
$$

Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.
Inductive Hypothesis:
Suppose that $P(j)$ is true for all integers $1 \leqslant j \leqslant k$ for some arbitrary $k \geqslant 2$.

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.
Inductive Hypothesis:
Suppose that $P(j)$ is true for all integers $1 \leqslant j \leqslant k$ for some arbitrary $k \geqslant 2$.
Inductive Step:
We will show $P(k+1)$ holds.

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.
Inductive Hypothesis:
Suppose that $P(j)$ is true for all integers $1 \leqslant j \leqslant k$ for some arbitrary $k \geqslant 2$.
Inductive Step:
We will show $P(k+1)$ holds.

$$
a(k+1)=2 a(k)-a(k-1)
$$

[Definition of a]

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.

Inductive Hypothesis:

Suppose that $P(j)$ is true for all integers $1 \leqslant j \leqslant k$ for some arbitrary $k \geqslant 2$.
Inductive Step:
We will show $P(k+1)$ holds.

$$
\begin{aligned}
a(k+1) & =2 a(k)-a(k-1) \\
& =2(2 k-1)-(2(k-1)-1)
\end{aligned}
$$

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.

Inductive Hypothesis:

Suppose that $P(j)$ is true for all integers $1 \leqslant j \leqslant k$ for some arbitrary $k \geqslant 2$.

Inductive Step:

We will show $P(k+1)$ holds.

$$
\begin{aligned}
a(k+1) & =2 a(k)-a(k-1) \\
& =2(2 k-1)-(2(k-1)-1) \\
& =2 k+1
\end{aligned}
$$

[Definition of a]
[Inductive Hypothesis]
[Algebra]

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

Task 6

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.

Inductive Hypothesis:

Suppose that $P(j)$ is true for all integers $1 \leqslant j \leqslant k$ for some arbitrary $k \geqslant 2$.

Inductive Step:

We will show $P(k+1)$ holds.

$$
\begin{aligned}
a(k+1) & =2 a(k)-a(k-1) \\
& =2(2 k-1)-(2(k-1)-1) \\
& =2 k+1 \\
& =2(k+1)-1
\end{aligned}
$$

[Definition of a]
[Inductive Hypothesis]
[Algebra]
[Algebra]
So, $P(k+1)$ holds.

Consider the function $a(n)$ defined for $n \geqslant 1$ recursively as follows.

$$
\begin{gathered}
a(1)=1 \\
a(2)=3 \\
a(n)=2 a(n-1)-a(n-2) \text { for } n \geqslant 3
\end{gathered}
$$

Use strong induction to prove that $a(n)=2 n-1$ for all $n \geqslant 1$.
Let $P(n)$ be " $a(n)=2 n-1$ ". We will show that $P(n)$ is true for all $n \geqslant 1$ by strong induction.

Base Cases $(n=1, n=2)$:
($n=1$)
$a(1)=1=2 \cdot 1-1$
($n=2$)
$a(2)=3=2 \cdot 2-1$
So, $P(1)$ and $P(2)$ hold.

Inductive Hypothesis:

Suppose that $P(j)$ is true for all integers $1 \leqslant j \leqslant k$ for some arbitrary $k \geqslant 2$.

Inductive Step:

We will show $P(k+1)$ holds.

$$
\begin{aligned}
a(k+1) & =2 a(k)-a(k-1) & & {[\text { Definition of } a] } \\
& =2(2 k-1)-(2(k-1)-1) & & {[\text { Inductive Hypothesis] }} \\
& =2 k+1 & & {[\text { Algebra] }} \\
& =2(k+1)-1 & & {[\text { Algebra] }}
\end{aligned}
$$

So, $P(k+1)$ holds.

Conclusion:

Therefore, $P(n)$ holds for all integers $n \geqslant 1$ by principle of strong induction.

Task 3

Define

$$
H_{i}=\sum_{j=1}^{i} \frac{1}{j}=1+\frac{1}{2}+\cdots+\frac{1}{i}
$$

The numbers H_{i} are called the harmonic numbers.
Prove that $H_{2^{n}} \geqslant 1+\frac{n}{2}$ for all integers $n \geqslant 0$.

Task 3

$$
H_{i}=\sum_{j=1}^{i} \frac{1}{j}=1+\frac{1}{2}+\cdots+\frac{1}{i}
$$

The numbers H_{i} are called the harmonic numbers.
Prove that $H_{2^{n}} \geqslant 1+\frac{n}{2}$ for all integers $n \geqslant 0$.
Let $P(n)$ be " $H_{2^{n}} \geqslant 1+\frac{n}{2}$ ". We will prove $P(n)$ for all integers $n \geqslant 0$ by induction.
Base Case $(n=0)$: $H_{2^{0}}=H_{1}=\sum_{j=1}^{1} \frac{1}{j}=1 \geqslant 1+\frac{0}{2}$, so $P(0)$ holds.
Induction Hypothesis: Assume that $H_{2^{k}} \geqslant 1+\frac{k}{2}$ for some arbitrary integer $k \geqslant 0$.
Induction Step: Goal: Show $H_{2^{k+1}} \geqslant 1+\frac{k+1}{2}$

$$
\begin{aligned}
H_{2^{k+1}} & =\sum_{j=1}^{2^{k+1}} \frac{1}{j} \\
& =\sum_{j=1}^{2^{k}} \frac{1}{j}+\sum_{j=2^{k}+1}^{2^{k+1}} \frac{1}{j} \\
& \geqslant 1+\frac{k}{2}+\sum_{j=2^{k}+1}^{2^{k+1}} \frac{1}{j} \quad \text { [Induction Hypothesis] } \\
& \geqslant 1+\frac{k}{2}+2^{k} \cdot \frac{1}{2^{k+1}} \quad \text { [There are } 2^{k} \text { terms in }\left[2^{k}+1,2^{k+1}\right] \text { and each is at least } \frac{1}{\left.2^{k+1}\right]} \\
& \geqslant 1+\frac{k}{2}+\frac{2^{k}}{2^{k+1}} \\
& \geqslant 1+\frac{k}{2}+\frac{1}{2} \geqslant 1+\frac{k+1}{2}
\end{aligned}
$$

So $P(k+1)$ follows.
Conclusion: $P(n)$ holds for all integers $n \geqslant 0$ by induction.

Midterm Review: Translation

Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- $\operatorname{soy}(x)$ is true iff x contains soy milk.
- whole (x) is true iff x contains whole milk.
- sugar (x) is true iff x contains sugar
- $\quad \operatorname{decaf}(x)$ is true iff x is not caffeinated.
- vegan (x) is true iff x is vegan.
- RobbieLikes (x) is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use quantifiers, the predicates above, and usual math connectors like $=$ and \neq.
a) Coffee drinks with whole milk are not vegan
b) Robbie only likes one coffee drink, and that drink is not vegan
c) There is a drink that has both sugar and soy milk.

Problem 1 - Translation

a) Coffee drinks with whole milk are not vegan

- $\operatorname{soy}(x)$ is true iff x contains soy milk
- whole (x) is true iff x contains whole milk
- sugar (x) is true iff x contains sugar
- decaf (x) is true iff x is not caffeinate
- vegan (x) is true iff x is vegan
- RobbieLikes (x) is true iff Robbie likes the drink x
a) Robbie only likes one coffee drink, and that drink is not vegan
a) There is a drink that has both sugar and soy milk.

Problem 1 - Translation

a) Coffee drinks with whole milk are not vegan

- $\operatorname{soy}(x)$ is true iff x contains soy milk
- whole (x) is true iff x contains whole milk
- sugar (x) is true iff x contains sugar
- $\quad \operatorname{decaf}(x)$ is true iff x is not caffeinate
- vegan (x) is true iff x is vegan
- RobbieLikes (x) is true iff Robbie likes the drink x

$$
\forall x(\text { whole }(x) \rightarrow \neg \operatorname{vegan}(x))
$$

a) Robbie only likes one coffee drink, and that drink is not vegan
a) There is a drink that has both sugar and soy milk.

Problem 1 - Translation

- soy (x) is true iff x contains soy milk
- whole (x) is true iff x contains whole milk
- sugar (x) is true iff x contains sugar
- $\operatorname{decaf}(x)$ is true iff x is not caffeinate
- vegan (x) is true iff x is vegan
- RobbieLikes (x) is true iff Robbie likes the drink x

$$
\forall x(\operatorname{whole}(x) \rightarrow \neg \operatorname{vegan}(x))
$$

a) Robbie only likes one coffee drink, and that drink is not vegan
$\exists x \forall y(\operatorname{RobbieLikes}(x) \wedge \neg \operatorname{Vegan}(x) \wedge[\operatorname{RobbieLikes}(y) \rightarrow x=y])$
a) There is a drink that has both sugar and soy milk.

Problem 1 - Translation

- soy (x) is true iff x contains soy milk
- whole (x) is true iff x contains whole milk
- sugar (x) is true iff x contains sugar
- $\operatorname{decaf}(x)$ is true iff x is not caffeinate
- vegan (x) is true iff x is vegan
- RobbieLikes (x) is true iff Robbie likes the drink x

$$
\forall x(\text { whole }(x) \rightarrow \neg \operatorname{vegan}(x))
$$

a) Robbie only likes one coffee drink, and that drink is not vegan
$\exists x \forall y(\operatorname{RobbieLikes}(x) \wedge \neg \operatorname{Vegan}(x) \wedge[\operatorname{RobbieLikes}(y) \rightarrow x=y])$
$\operatorname{Or} \exists x(\operatorname{RobbieLikes}(x) \wedge \neg \operatorname{Vegan}(x) \wedge \forall y[\operatorname{RobbieLikes}(y) \rightarrow x=y])$
a) There is a drink that has both sugar and soy milk.

Problem 1 - Translation

- soy (x) is true iff x contains soy milk
- whole (x) is true iff x contains whole milk
- sugar (x) is true iff x contains sugar
- $\operatorname{decaf}(x)$ is true iff x is not caffeinate
- vegan (x) is true iff x is vegan
- RobbieLikes (x) is true iff Robbie likes the drink x
a) Coffee drinks with whole milk are not vegan

$$
\forall x(\text { whole }(x) \rightarrow \neg \operatorname{vegan}(x))
$$

a) Robbie only likes one coffee drink, and that drink is not vegan
$\exists x \forall y(\operatorname{RobbieLikes}(x) \wedge \neg \operatorname{Vegan}(x) \wedge[\operatorname{RobbieLikes}(y) \rightarrow x=y])$
$\operatorname{Or} \exists x(\operatorname{RobbieLikes}(x) \wedge \neg \operatorname{Vegan}(x) \wedge \forall y[\operatorname{RobbieLikes}(y) \rightarrow x=y])$
a) There is a drink that has both sugar and soy milk.

$$
\exists x(\operatorname{sugar}(x) \wedge \operatorname{soy}(x))
$$

Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- $\operatorname{soy}(x)$ is true iff x contains soy milk.
- whole (x) is true iff x contains whole milk.
- sugar (x) is true iff x contains sugar
- decaf (x) is true iff x is not caffeinated.
- vegan (x) is true iff x is vegan.
- RobbieLikes (x) is true iff Robbie likes the drink x.

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage of domain restriction.

$$
\forall x([\operatorname{decaf}(x) \wedge \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))
$$

Problem 1 - Translation

- soy (x) is true iff x contains soy milk
- whole (x) is true iff x contains whole milk
- sugar (x) is true iff x contains sugar
- decaf (x) is true iff x is not caffeinate
- vegan (x) is true iff x is vegan
- RobbieLikes (x) is true iff Robbie likes the drink x

$\forall x([\operatorname{decaf}(x) \wedge \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$

Problem 1 - Translation

- $\operatorname{soy}(x)$ is true iff x contains soy milk
- whole (x) is true iff x contains whole milk
- sugar (x) is true iff x contains sugar
- $\operatorname{decaf}(x)$ is true iff x is not caffeinate
- vegan (x) is true iff x is vegan
- RobbieLikes (x) is true iff Robbie likes the drink x
$\forall x([\operatorname{decaf}(x) \wedge$ RobbieLikes $(x)] \rightarrow \operatorname{sugar}(x))$

Every decaf drink that Robbie likes has sugar.

Problem 1 - Translation

- $\quad \operatorname{soy}(x)$ is true iff x contains soy milk
- whole (x) is true iff x contains whole milk
- sugar (x) is true iff x contains sugar
- $\quad \operatorname{decaf}(x)$ is true iff x is not caffeinate
- vegan (x) is true iff x is vegan
- RobbieLikes (x) is true iff Robbie likes the drink x
$\forall x([\operatorname{decaf}(x) \wedge \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$

Every decaf drink that Robbie likes has sugar.

Statements like "For every decaf drink, if Robbie likes it then it has sugar" are equivalent, but only partially take advantage of domain restriction.

That's All, Folks!

Thanks for coming to section this week! Any questions?

