Quiz Section 5: Set Theory, Induction

Review

Set theory:

- $A \backslash B=\{x: x \in A \wedge x \notin B\}$. Or, equivalently, $x \in A \backslash B \leftrightarrow x \in A \wedge x \notin B$.
- $A \times B=\{(a, b): a \in A, b \in B\}$. Or, equivalently, $(a, b) \in A \times B \leftrightarrow a \in A \wedge b \in B$.
- $\mathcal{P}(A)=\{B: B \subseteq A\}$. Or, equivalently, $B \in \mathcal{P}(A) \leftrightarrow B \subseteq A$.

5 Steps to an Induction Proof: To prove $\forall n \in \mathbb{N} P(n)$ (or equivalently $\forall n \geqslant 0 P(n)$ for $n \in \mathbb{Z}$).

1. "Let $P(n)$ be \langle fill in \rangle. We will show that $P(n)$ is true for every $n \in \mathbb{N}$ (or equivalently integer $n \geqslant 0$) by induction."
2. "Base Case:" Prove $P(0)$
3. "Inductive Hypothesis: Suppose $P(k)$ is true for some arbitrary integer $k \geqslant 0$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true.

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it.
(Don't assume $P(k+1)$!)
5. "Conclusion: The claim follows by induction"

Task 1 - How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say ∞.
a) $A=\{1,2,3,2\}$
b) $B=\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\}$
c) $D=\varnothing$
d) $E=\{\varnothing\}$
e) $C=A \times(B \cup\{7\})$
f) $G=\mathcal{P}(\{\varnothing\})$

Task 2 - Set Replay

Let A, B, and C be sets. Prove each of the following claims formally. Then, translate to English.
a) $A \backslash B \subseteq A \cup C \quad$ (Try it on Cozy here: http://bit.ly/S053A)
b) $(A \backslash B) \backslash C \subseteq A \backslash C$
(Try it on Cozy here: http://bit.ly/S053B)

Task 3 - Set Equality

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
State what the claim becomes when you unroll the definition of "=" sets. Then, following the Meta Theorem template, write an English proof that the claim holds.

Task 4 - Congruence Solver

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leqslant y<33$.
b) Now, solve $7 z \equiv_{33} 2$ for all of its integer solutions z.

Task 5 - Power Sets

Let A and B be sets. Write a formal proof that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ follows from $A \subseteq B$. Then, translate your proof to English.

Task 6 - Induction with Equality

a) Define the triangle numbers as $\triangle_{n}=0+1+2+\cdots+n$, where $n \in \mathbb{N}$.

We already saw in class that $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
0^{3}+1^{3}+\cdots+n^{3}=\triangle_{n}^{2}
$$

b) For every $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the natural numbers up to n, or

$$
S_{n}=0^{2}+1^{2}+\cdots n^{2} .
$$

For all $n \in \mathbb{N}$, prove that $S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.

Task 7 - Induction with Divides

Prove that $2 \mid 3^{n}-1$ for all $n \geqslant 0$ by induction.

