CSE 311 Section 5

Number Theory \& Set Theory

Announcements \& Reminders

- 390z practice midterm on April 30th, 12:30pm - 2:20pm and 2:30pm - 4:20pm
- HW4 due tomorrow @ 11:00PM on Gradescope
- Make sure you tagged pages on gradescope correctly
- HW5
- Due Friday 5/3 @11:00 PM
- Midterm Review
- Monday, May 6th 5:00-8:00PM SIG 134
- Midterm
- Wednesday, May 8th, regular class periods
- Book One-on-Ones on the course homepage!

Problem 4 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

Problem 5 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

First, we find the gcd:

$$
\begin{array}{rlrl}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) & & 33=4 \cdot 7+5 \\
& =\operatorname{gcd}(5,2) & 7=1 \cdot 5+2 \\
& =\operatorname{gcd}(2, \mathbf{1}) & 5 & 5 \cdot 2 \cdot 2+\mathbf{1} \\
& =\operatorname{gcd}(\mathbf{1}, 0) & & 2=2 \cdot \mathbf{1}+0
\end{array}
$$

Problem 5 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

First, we find the gcd:

$$
\begin{aligned}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) \\
& =\operatorname{gcd}(5,2) \\
& =\operatorname{gcd}(2, \mathbf{1}) \\
& =\operatorname{gcd}(\mathbf{1}, 0)
\end{aligned}
$$

33 = $4 \cdot 7+5$
$7=1 \cdot 5+2$
$5=2 \cdot 2+1$
2 = 2 • $1+0$

Next, we re-arrange the equations by solving for the remainder:

$$
\begin{aligned}
& \mathbf{1}=5-2 \cdot 2 \\
& 2=7-1 \cdot 5 \\
& 5=33-4 \cdot 7
\end{aligned}
$$

Problem 5 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.
b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

Problem 5 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

First, we find the gcd:

$$
\begin{array}{rlrl}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) & & 33=4 \cdot 7+5 \\
& =\operatorname{gcd}(5,2) & 7=1 \cdot 5+2 \\
& =\operatorname{gcd}(2, \mathbf{1}) & & 5=2 \cdot 2+\mathbf{1} \\
& =\operatorname{gcd}(\mathbf{1}, 0) & & 2=2 \cdot \mathbf{1}+0
\end{array}
$$

Now, we backward substitute into the boxed numbers using the equations:

$$
\begin{aligned}
\mathbf{1} & =5-2 \cdot 2 \\
& =5-2 \cdot(7-1 \cdot 5) \\
& =3 \cdot 5-2 \cdot 7 \\
& =3 \cdot(33-4 \cdot 7)-2 \cdot 7 \\
& =3 \cdot 33+-14 \cdot 7
\end{aligned}
$$

Next, we re-arrange the equations by solving for the remainder:

$$
\begin{aligned}
& \mathbf{1}=5-2 \cdot 2 \\
& 2=7-1 \cdot 5 \\
& 5=33-4 \cdot 7
\end{aligned}
$$

Problem 5 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \bmod 33$. That is, find y such that $7 y \equiv 1(\bmod 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y<33$.

First, we find the gcd:

$$
\begin{aligned}
\operatorname{gcd}(33,7) & =\operatorname{gcd}(7,5) \\
& =\operatorname{gcd}(5,2) \\
& =\operatorname{gcd}(2, \mathbf{1}) \\
& =\operatorname{gcd}(\mathbf{1}, 0)
\end{aligned}
$$

Next, we re-arrange the equations by solving for the remainder:
$\mathbf{1}=5-2 \cdot 2$
$2=7-1 \cdot 5$
$5=33-4 \cdot 7$

Now, we backward substitute into the boxed numbers using the equations:

$$
\begin{aligned}
\mathbf{1} & =5-2 \cdot 2 \\
& =5-2 \cdot(7-1 \cdot 5) \\
& =3 \cdot 5-2 \cdot 7 \\
& =3 \cdot(33-4 \cdot 7)-2 \cdot 7 \\
& =3 \cdot 33+-14 \cdot 7
\end{aligned}
$$

So, 1 = $3 \cdot 33$ + - $14 \cdot$
7. Thus, 33 - $\mathbf{1 4}=19$
is the multiplicative
inverse of 7 mod 33

Problem 5 - Extended Euclidean Algorithm

b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

Problem 5 - Extended Euclidean Algorithm

b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

If $7 \mathrm{y} \equiv 1(\bmod 33)$, then $2 \cdot 7 \mathrm{y} \equiv 2(\bmod 33)$.

Problem 5 - Extended Euclidean Algorithm

b) Now, solve $7 z \equiv 2(\bmod 33)$ for all of its integer solutions z.

If we have $7 \mathrm{z} \equiv 2(\bmod 33)$, multiplying both sides by 19 , we get:
$z \equiv 2 \cdot 19(\bmod 33) \equiv 5(\bmod 33)$.
This means that the set of solutions is $\{5+33 \mathrm{k} \mid \mathrm{k} \in \mathrm{Z}\}$

Sets

Sets

- A set is an unordered group of distinct elements
- Set variable names are capital letters, with lower-case letters for elements
- Set Notation:
- $a \in A$: "a is in A " or " a is an element of A "
- $A \subseteq B$: " A is a subset of B ", every element of A is also in B
- \varnothing : "empty set", a unique set containing no elements
- $\mathcal{P}(A)$: "power set of A ", the set of all subsets of A including the empty set and A itself

Set Operators

- Subset:

$$
\begin{aligned}
& A \subseteq B \equiv \forall x(x \in A \rightarrow x \in B) \\
& A=B \equiv \forall x(x \in A \leftrightarrow x \in B) \equiv A \subseteq B \wedge B \subseteq A \\
& A \cup B=\{x: x \in A \vee x \in B\} \\
& A \cap B=\{x: x \in A \wedge x \in B\}
\end{aligned}
$$

- Equality:
- Union:
- Intersection:
- Complement:
- Difference:
$\bar{A}=\{x: x \notin A\}$
- Cartesian Product: $A \times B=\{(a, b): a \in A \wedge b \in B\}$

Understand Sets Visually!

Understand Sets Visually!

What Set Operation is this?

Understand Sets Visually!

What Set Operation is this? Difference: A \B

Understand Sets Visually!

Understand Sets Visually!

What Set Operation is this?

Understand Sets Visually!

What Set Operation is this? A complement: \bar{A}

Understand Sets Visually!

Understand Sets Visually!

What Set Operation is this?

Understand Sets Visually!

What Set Operation is this? Union: A U B

Set Proofs

Subset Proofs

One of the most common types of proofs you will be asked to write involving sets is a subset proof. That is, you will be asked to prove that $A \subseteq B$. We always approach these proofs with the same proof skeleton:

Let x be an arbitrary element of A, so $x \in A$.
... some steps using set definitions to show that x must also be in B...
Thus, $x \in B$
Since x was arbitrary, $A \subseteq B$.

Using Cozy For Sets

- A U B: A Union B- "A cup B"
- A \cap B: "A cap B"
- $A \in B$: "A in B"
- $A \backslash B: " A \backslash B$ "
- B complement- "~B" (Only one Argument)
- A\B\C is implicitly (A\B)\C

New Feature: Use the text button to see what the text input for a proof should be

View: ○ HTML ○ Text

Problem 3a-Subsets

For any sets A, B, and C, show that it holds that $A \backslash B \subseteq A \cup C$

Try it on Cozy: bit.ly/S053A

Problem 3a-Cozy Solution

For any sets A, B, and C, show that it holds that $A \backslash B \subseteq A \cup C$

Let x be arbitrary.

```
1.1.1. x in A \ B assumption
    1.1.2. }x\mathrm{ in A and not ( }x\mathrm{ in B)
1.1.3. x in A
    1.1.4. }\textrm{x}\mathrm{ in A or }\textrm{x}\mathrm{ in B
1.1.5. x in A cup B
1.1. }x\mathrm{ in A \ B -> x in A cup B
    defof \{A} {B} 1.1.1
    elim and 1.1.2 left
    intro or 1.1.3 (x in B) right
    undef cup {A} {B} 1.1.4 }
1. forall }x\mathrm{ , x in A \B >> x in A cup B intro forall (forall }x,x\mathrm{ in A \ B -> x in A cup B) x
2. A \ B subset A cup B
undef subset {A \ B} {A cup B} 1 x
```


Problem 3b- Subsets

For any sets A, B, and C, show that it holds that $(A \backslash B) \backslash C \subseteq A \backslash C$

Try it on Cozy: bit.ly/S053B

Problem 3b- Cozy Solution

Let x be arbitrary.

```
1.1.1. }x\mathrm{ in }A\B\
1.1.2. }x\mathrm{ in }A\B\mathrm{ and not ( }x\mathrm{ in C)
1.1.3. }x\mathrm{ in A and not (x in B) and not (x in C)
1.1.4. not (x in C)
1.1.5. }x\mathrm{ in A and not ( }x\mathrm{ in B)
1.1.6. x in A
1.1.7. }x\mathrm{ in A and not ( }x\mathrm{ in C)
1.1.8. }x\mathrm{ in }A\
1.1. }x\mathrm{ in }A\B\C->x in A\C
1. forall x, x in A\B\C -> x in A\C
2. A \ B \ C subset A \ C
assumption
defof \{A\B} {C} 1.1.1
defof \{A} {B} 1.1.2
elim and 1.1.3 right
elim and 1.1.3 left
elim and 1.1.5 left
intro and 1.1.6 1.1.4
undef \{A} {C} 1.1.7 x
direct proof (x in A \ B \ C -> x in A \ C) x
intro forall (forall x, x in A \ B \ C -> x in A \ C) x
undef subset {A\B\C} {A \ C} 1 x
```


Set Equality: Using Meta Theorem

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
Let x be arbitrary.

Since x was arbitrary, we have shown that the two sets contain the same elements.

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
Let x be arbitrary.

$$
x \in A \backslash(B \cup C) \equiv x \in A \wedge \neg(x \in(B \cup C)) \quad \text { [Def of Set Difference] }
$$

Since x was arbitrary, we have shown that the two sets contain the same elements.

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
Let x be arbitrary.

$$
\begin{aligned}
x \in A \backslash(B \cup C) & \equiv x \in A \wedge \neg(x \in(B \cup C)) & & \text { [Def of Set Difference] } \\
& \equiv x \in A \wedge \neg(x \in B \vee x \in C) & & \text { [Def of Union] }
\end{aligned}
$$

Since x was arbitrary, we have shown that the two sets contain the same elements.

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
Let x be arbitrary.

$$
\begin{aligned}
x \in A \backslash(B \cup C) & \equiv x \in A \wedge \neg(x \in(B \cup C)) & & \text { [Def of Set Difference] } \\
& \equiv x \in A \wedge \neg(x \in B \vee x \in C) & & \text { [Def of Union] } \\
& \equiv x \in A \wedge(x \notin B \wedge x \notin C) & & \text { [De Morgan] }
\end{aligned}
$$

Since x was arbitrary, we have shown that the two sets contain the same elements.

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
Let x be arbitrary.

$$
\begin{aligned}
x \in A \backslash(B \cup C) & \equiv x \in A \wedge \neg(x \in(B \cup C)) & & \text { [Def of Set Difference] } \\
& \equiv x \in A \wedge \neg(x \in B \vee x \in C) & & \text { [Def of Union] } \\
& \equiv x \in A \wedge(x \notin B \wedge x \notin C) & & \text { [De Morgan] } \\
& \equiv(x \in A \wedge x \in A) \wedge(x \neq B \wedge x \notin C) & & {[\text { Idempotency] }}
\end{aligned}
$$

Since x was arbitrary, we have shown that the two sets contain the same elements.

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
Let x be arbitrary.

$$
\begin{aligned}
x \in A \backslash(B \cup C) & \equiv x \in A \wedge \neg(x \in(B \cup C)) & & \text { [Def of Set Difference] } \\
& \equiv x \in A \wedge \neg(x \in B \vee x \in C) & & \text { [Def of Union] } \\
& \equiv x \in A \wedge(x \notin B \wedge x \notin C) & & \text { [De Morgan] } \\
& \equiv(x \in A \wedge x \in A) \wedge(x \notin B \wedge x \notin C) & & {[\text { Idempotency] }} \\
& \equiv(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C) & & {[\text { Associativity/Commutativity] }}
\end{aligned}
$$

Since x was arbitrary, we have shown that the two sets contain the same elements.

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
Let x be arbitrary.

$$
\begin{aligned}
x \in A \backslash(B \cup C) & \equiv x \in A \wedge \neg(x \in(B \cup C)) & & \text { [Def of Set Difference] } \\
& \equiv x \in A \wedge \neg(x \in B \vee x \in C) & & \text { [Def of Union] } \\
& \equiv x \in A \wedge(x \notin B \wedge x \notin C) & & \text { [De Morgan] } \\
& \equiv(x \in A \wedge x \in A) \wedge(x \neq B \wedge x \neq C) & & \text { [Idempotency] } \\
& \equiv(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C) & & \text { [Associativity/Commutativity] } \\
& \equiv(x \in(A \backslash B)) \wedge(x \in(A \backslash C)) & & \text { [Def of Set Difference] }
\end{aligned}
$$

Since x was arbitrary, we have shown that the two sets contain the same elements.

Problem 4

Let A and B be sets. Consider the claim: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.
Let x be arbitrary.

$$
\begin{aligned}
x \in A \backslash(B \cup C) & \equiv x \in A \wedge \neg(x \in(B \cup C)) & & \text { [Def of Set Difference] } \\
& \equiv x \in A \wedge \neg(x \in B \vee x \in C) & & \text { [Def of Union] } \\
& \equiv x \in A \wedge(x \notin B \wedge x \notin C) & & \text { [De Morgan] } \\
& \equiv(x \in A \wedge x \in A) \wedge(x \neq B \wedge x \neq C) & & \text { [Idempotency] } \\
& \equiv(x \in A \wedge x \notin B) \wedge(x \in A \wedge x \notin C) & & \text { [Associativity/Commutativity] } \\
& \equiv(x \in(A \backslash B)) \wedge(x \in(A \backslash C)) & & \text { [Def of Set Difference] } \\
& \equiv(x \in(A \backslash B) \cap(A \backslash C)) & & \text { [Def of Intersection] }
\end{aligned}
$$

Since x was arbitrary, we have shown that the two sets contain the same elements.

Number Theory (optional)

Problem

Prove that given $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$ that $\mathrm{a}=\mathrm{b}$
Try it on Cozy: bit.ly/311S05

That's all Folks!

