CSE 311 Section 5

Number Theory & Set Theory

Announcements & Reminders

- 390z practice midterm on April 30th, 12:30pm 2:20pm and 2:30pm 4:20pm
- HW4 due tomorrow @ 11:00PM on Gradescope
 - Make sure you tagged pages on gradescope correctly
- HW5
 - Due <u>Friday 5/3</u> @11:00 PM
- Midterm Review
 - Monday, May 6th 5:00-8:00PM SIG 134
- Midterm
 - Wednesday, May 8th, regular class periods
- Book One-on-Ones on the course homepage!

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

```
First, we find the gcd:
```

gcd(<mark>33</mark> ,7)	= gcd(7,5)	33	=	4	•	7	+	5
	= gcd(5,2)	7	=	1	•	5	+	2
	= gcd(2, 1)	5	=	2	•	2	+	1
	= gcd(1 ,0)	2	=	2	•	1	+	0

Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You a) should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.

First, we find the gcd:		Next, we re-arrange the
gcd(33,7) = gcd(7)	$(7,5)$ $(33) = 4 \cdot 7 + 7$	5 equations by solving for the
= gcd(5	5,2) 7 = 1 • 5 +	2 remainder:
= gcd(2	(2,1) 5 = 2 • 2 +	1 1 = 5 - 2 • 2
= gcd(1	1,0) 2 = 2 • 1 +	$0 2 = 7 - 1 \cdot 5$
		5 = 33 - 4 • 7

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

Try this problem with the people around you, and then we'll go over it together!

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

First, we find the gcd:						
gcd(<mark>33</mark> ,7)	= gcd(7,5)	33	=	4	٠	7 + 5
	= gcd(5,2)	7	=	1	•	5 + 2
	= gcd(2, 1)	5	=	2	•	2 + 1
	= gcd(1 ,0)	2	=	2	•	1 + 0

Next, we re-arrange the equations by solving for the remainder:

1	=	5	-	2	٠	2	
2	=	7	_	1	•	5	
5	=	33	3 -	- 2	+ •	•	7

Now, we backward substitute into the boxed numbers using the equations:

$$= 5 - 2 \cdot 2
 = 5 - 2 \cdot (7 - 1 \cdot 5)
 = 3 \cdot 5 - 2 \cdot 7
 = 3 \cdot (33 - 4 \cdot 7) - 2 \cdot 7
 = 3 \cdot 33 + -14 \cdot 7$$

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

First, we find t	he gcd:								Next, we re-arrange the
gcd(<mark>33</mark> ,7)	= gcd(7,5)					7 -		1	equations by solving for the
	= gcd(5,2)	7	=	1	•	5 -	ł	2	remainder: 1 = 5 - 2 • 2 2 = 7 - 1 • 5
	= gcd(2,1)	5	=	2	•	2 -	ł	1	$1 = 5 - 2 \cdot 2$
	= gcd(1 ,0)	2	=	2	•	1 -	ł		
								4	5 - 33 - 1 • 7

Now, we backward substitute into the boxed numbers using the equations:

$$1 = 5 - 2 \cdot 2$$

= 5 - 2 \cdot (7 - 1 \cdot 5)
= 3 \cdot 5 - 2 \cdot 7
= 3 \cdot (33 - 4 \cdot 7) - 2 \cdot 7
= 3 \cdot 33 + -14 \cdot 7

So, **1** = **3** • 33 + -14 • 7. Thus, 33 - 14 = 19 is the multiplicative inverse of 7 mod 33

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

If $7y \equiv 1 \pmod{33}$, then $2 \cdot 7y \equiv 2 \pmod{33}$.

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

If we have $7z \equiv 2 \pmod{33}$, multiplying both sides by 19, we get:

 $z \equiv 2 \cdot 19 \pmod{33} \equiv 5 \pmod{33}.$

This means that the set of solutions is $\{5 + 33k \mid k \in Z\}$

Sets

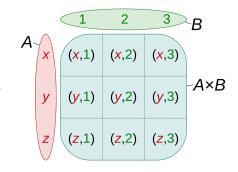
Sets

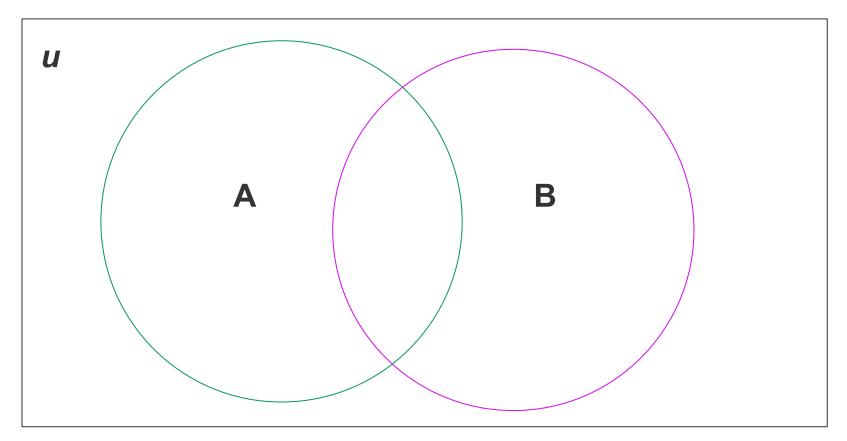
- A set is an **unordered** group of **distinct** elements
 - Set variable names are capital letters, with lower-case letters for elements
- Set Notation:
 - $a \in A$: "a is in A" or "a is an element of A"
 - $A \subseteq B$: "A is a subset of B", every element of A is also in B
 - Ø: "empty set", a unique set containing no elements
 - $\mathcal{P}(A)$: "power set of A", the set of all subsets of A including the empty set and A itself

Set Operators

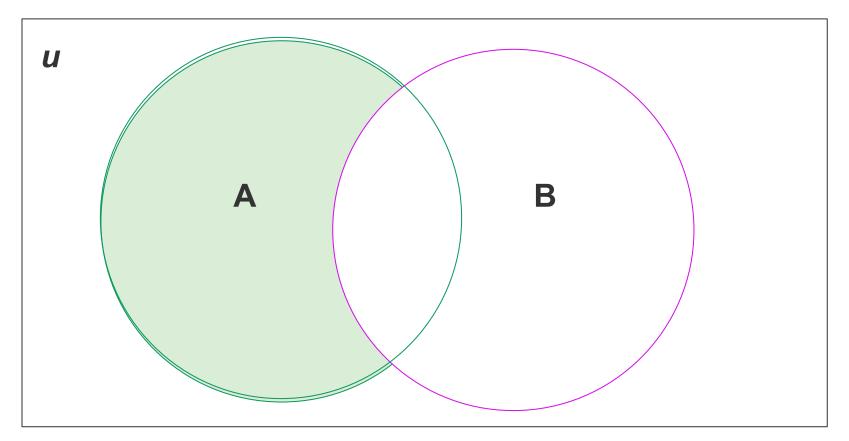
- Subset: $A \subseteq B \equiv \forall x(x \in A)$
 - Equality:
 - Union:
 - Intersection:
 - Complement:
 - Difference:

- $A \subseteq B \equiv \forall x (x \in A \to x \in B)$
 - $A = B \equiv \forall x (x \in A \leftrightarrow x \in B) \equiv A \subseteq B \land B \subseteq A$
 - $A \cup B = \{x \colon x \in A \lor x \in B\}$
 - $A \cap B = \{x \colon x \in A \land x \in B\}$
- $\overline{A} = \{x \colon x \notin A\}$
 - $A \backslash B = \{x \colon x \in A \land x \notin B\}$
- Cartesian Product: $A \times B = \{(a, b) : a \in A \land b \in B\}$

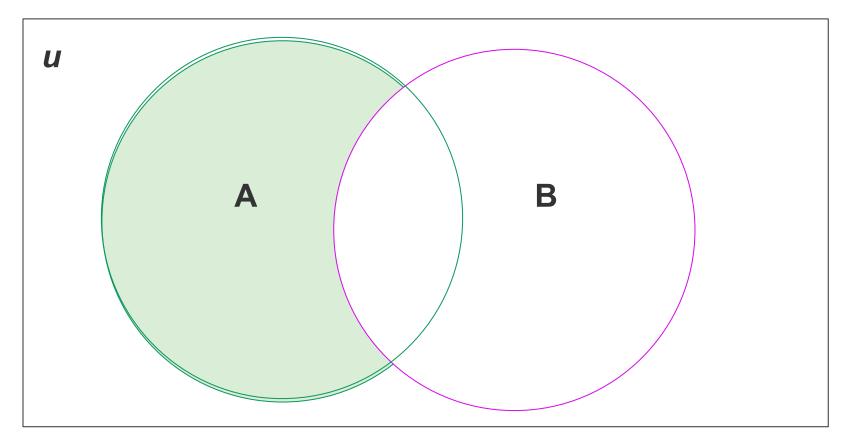


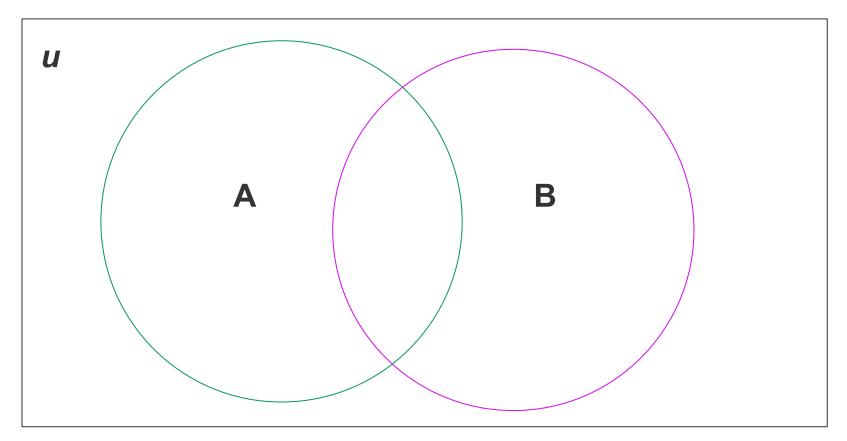


What Set Operation is this?

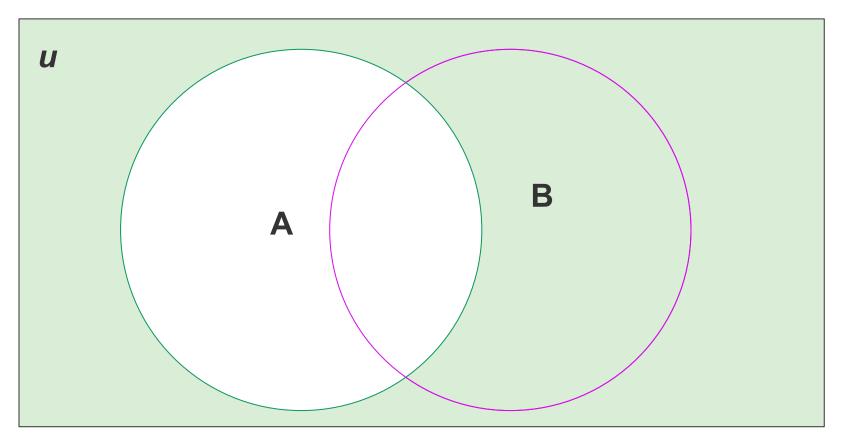


What Set Operation is this? Difference: A \ B

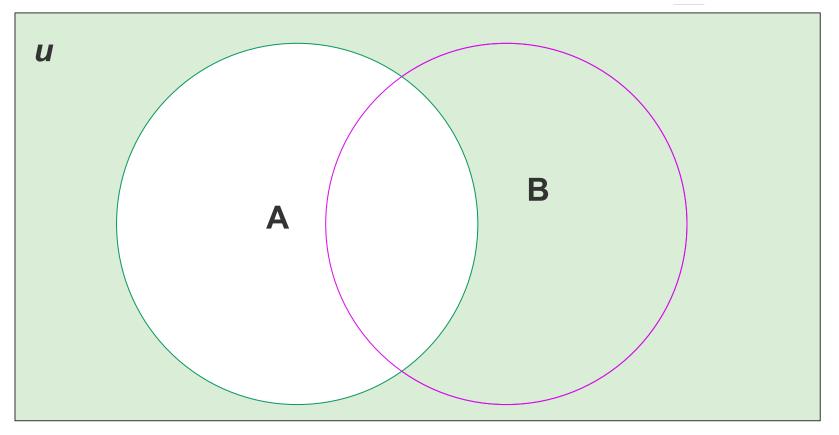


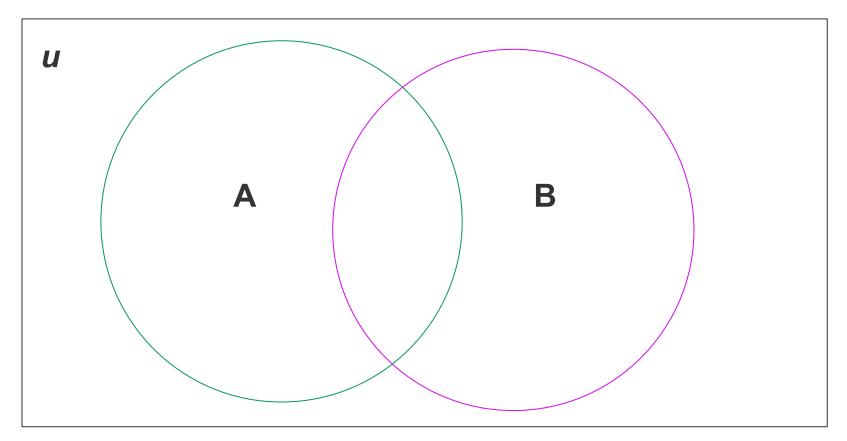


What Set Operation is this?

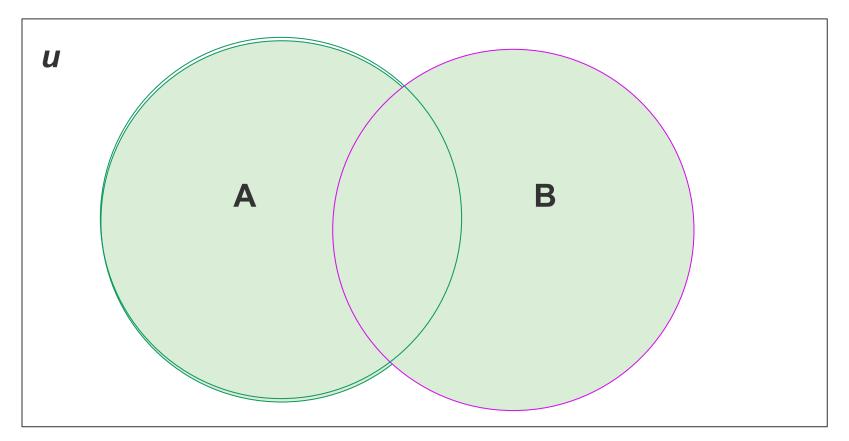


What Set Operation is this? A complement: \overline{A}

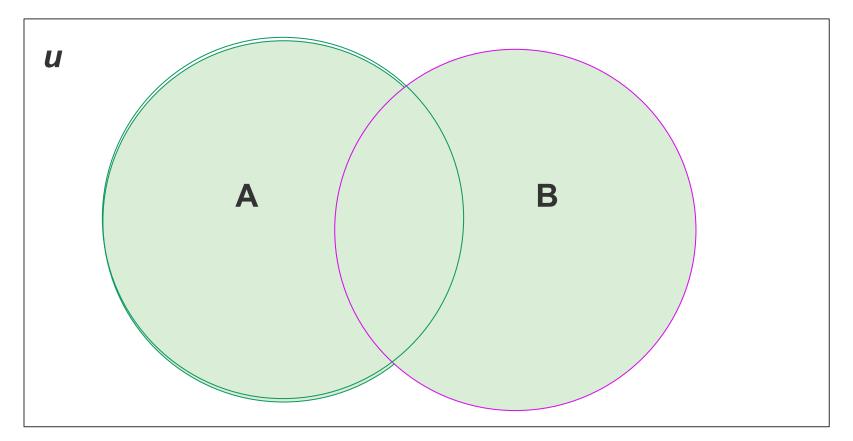




What Set Operation is this?



What Set Operation is this? Union: A U B



Set Proofs

Subset Proofs

One of the most common types of proofs you will be asked to write involving sets is a subset proof. That is, you will be asked to prove that $A \subseteq B$. We always approach these proofs with the same proof skeleton:

Let x be an arbitrary element of A, so $x \in A$.

... some steps using set definitions to show that x must also be in B... Thus, $x \in B$

Since x was arbitrary, $A \subseteq B$.

Using Cozy For Sets

- A U B: A Union B- "A cup B"
- **A** ∩ **B**: "A cap B"
- **A** ∈ **B**: "A in B"
- A \ B: "A \ B"
- B complement- "~B" (Only one Argument)
- A\B\C is implicitly (A\B)\C

New Feature: Use the **text** button to see what the text input for a proof should be

Problem 3a – Subsets

For any sets *A*, *B*, and *C*, show that it holds that $A \ B \subseteq A \cup C$

Try it on Cozy: <u>bit.ly/S053A</u>

Problem 3a – Cozy Solution

For any sets *A*, *B*, and *C*, show that it holds that $A \ B \subseteq A \cup C$

Let x be arbitrary.

1.1.1.	x in A \setminus B	assumption
1.1.2.	x in A and not (x in B)	defof \ {A} {B} 1.1.1
1.1.3.	x in A	elim and 1.1.2 left
1.1.4.	x in A or x in B	intro or 1.1.3 (x in B) right
1.1.5.	x in A cup B	undef cup {A} {B} 1.1.4 🗙
1.1.	x in A $\ B \rightarrow$ x in A cup B	direct proof (x in A $\ B \rightarrow$ x in A cup B) 🗙
1.	forall x, x in A \setminus B -> x in A cup B	intro forall (forall x, x in A \setminus B -> x in A cup B) x
2.	A \ B subset A cup B	undef subset {A \ B} {A cup B} 1 🗙

Problem 3b- Subsets

For any sets A, B, and C, show that it holds that $(A \ B) \ C \subseteq A \ C$

Try it on Cozy: <u>bit.ly/S053B</u>

Problem 3b- Cozy Solution

Let x be arbitrary.

1.1.1.	x in A \ B \ C	assumption
1.1.2.	x in A \setminus B and not (x in C)	defof \ {A \ B} {C} 1.1.1
1.1.3.	x in A and not (x in B) and not (x in C)	defof \ {A} {B} 1.1.2
1.1.4.	not (x in C)	elim and 1.1.3 right
1.1.5.	x in A and not (x in B)	elim and 1.1.3 left
1.1.6.	x in A	elim and 1.1.5 left
1.1.7.	x in A and not (x in C)	intro and 1.1.6 1.1.4
1.1.8.	x in A \setminus C	undef \ {A} {C} 1.1.7 🗙
1.1.	x in A $\ B \ C \rightarrow$ x in A $\ C$	direct proof (x in A $\ B \ C \rightarrow$ x in A $\ C$) 💥
1.	forall x, x in A \setminus B \setminus C -> x in A \setminus C	intro forall (forall x, x in A \setminus B \setminus C -> x in A \setminus C) x
2.	A \setminus B \setminus C subset A \setminus C	undef subset {A $\ B \ C$ {A $\ C$ 1 x

Set Equality: Using Meta Theorem



Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let x be arbitrary.

Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let x be arbitrary.

 $x \in A \setminus (B \cup C) \equiv x \in A \land \neg (x \in (B \cup C))$

[Def of Set Difference]

Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let x be arbitrary.

 $x \in A \setminus (B \cup C) \equiv x \in A \land \neg (x \in (B \cup C))$ $\equiv x \in A \land \neg (x \in B \lor x \in C)$

[Def of Set Difference] [Def of Union]

Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let x be arbitrary.

$$x \in A \setminus (B \cup C) \equiv x \in A \land \neg (x \in (B \cup C))$$
$$\equiv x \in A \land \neg (x \in B \lor x \in C)$$
$$\equiv x \in A \land (x \notin B \land x \notin C)$$

[Def of Set Difference] [Def of Union] [De Morgan]

Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let x be arbitrary.

$$x \in A \setminus (B \cup C) \equiv x \in A \land \neg (x \in (B \cup C))$$

$$\equiv x \in A \land \neg (x \in B \lor x \in C)$$

$$\equiv x \in A \land (x \notin B \land x \notin C)$$

$$\equiv (x \in A \land x \in A) \land (x \notin B \land x \notin C)$$

$$\equiv (x \in A \land x \in A) \land (x \notin B \land x \notin C)$$

$$[Def of Union]$$

$$[De Morgan]$$

$$\equiv (x \in A \land x \in A) \land (x \notin B \land x \notin C)$$

$$[Idempotency]$$

Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let x be arbitrary.

$$x \in A \setminus (B \cup C) \equiv x \in A \land \neg (x \in (B \cup C))$$

$$\equiv x \in A \land \neg (x \in B \lor x \in C)$$

$$\equiv x \in A \land (x \notin B \land x \notin C)$$

$$\equiv (x \in A \land x \in A) \land (x \notin B \land x \notin C)$$

$$\equiv (x \in A \land x \in A) \land (x \notin B \land x \notin C)$$

$$\equiv (x \in A \land x \notin B) \land (x \in A \land x \notin C)$$

$$[dempotency]$$

$$\equiv (x \in A \land x \notin B) \land (x \in A \land x \notin C)$$

$$[Associativity/Commutativity]$$

Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let x be arbitrary.

$$\begin{aligned} x \in A \setminus (B \cup C) &\equiv x \in A \land \neg (x \in (B \cup C)) & \text{[Def of Set Difference]} \\ &\equiv x \in A \land \neg (x \in B \lor x \in C) & \text{[Def of Union]} \\ &\equiv x \in A \land (x \notin B \land x \notin C) & \text{[De Morgan]} \\ &\equiv (x \in A \land x \in A) \land (x \notin B \land x \notin C) & \text{[Idempotency]} \\ &\equiv (x \in A \land x \notin B) \land (x \in A \land x \notin C) & \text{[Associativity/Commutativity]} \\ &\equiv (x \in (A \setminus B)) \land (x \in (A \setminus C)) & \text{[Def of Set Difference]} \end{aligned}$$

Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Let x be arbitrary.

$$\begin{aligned} x \in A \setminus (B \cup C) &\equiv x \in A \land \neg (x \in (B \cup C)) & \text{[Def of Set Difference]} \\ &\equiv x \in A \land \neg (x \in B \lor x \in C) & \text{[Def of Union]} \\ &\equiv x \in A \land (x \notin B \land x \notin C) & \text{[De Morgan]} \\ &\equiv (x \in A \land x \in A) \land (x \notin B \land x \notin C) & \text{[Idempotency]} \\ &\equiv (x \in A \land x \notin B) \land (x \in A \land x \notin C) & \text{[Associativity/Commutativity]} \\ &\equiv (x \in (A \setminus B)) \land (x \in (A \setminus C)) & \text{[Def of Set Difference]} \\ &\equiv (x \in (A \setminus B) \cap (A \setminus C)) & \text{[Def of Intersection]} \end{aligned}$$

Number Theory (optional)

Prove that given a|b and b|a that a=b

Try it on Cozy: bit.ly/311S05

That's all Folks!

