Quiz Section 4: Number Theory

Review

Divisibility: For $d \neq 0$ we write $(d \mid a)$ iff there is an integer k such that $a=k d$.
Division Theorem: For integers a and b with $b>0$, there are unique integers q and r such that $a=q b+r$ and $0 \leqslant r<b$. The remainder r is also written as $a \bmod b$.
Mod Predicate $(\bmod m)$: For integer $m>0$ and integers a and b, we write $a \equiv_{m} b$ iff $m \mid(a-b)$. This is equivalent to $(a-b)=k m$ for some integer k; it is also equivalent to $a=b+k m$ for some integer k.
Properties of $(\bmod m)$:

- For $m>0, a \equiv_{m} b$ iff $a \bmod m=b \bmod m$.
- If $a \equiv_{m} b$ and $b \equiv_{m} c$ then $a \equiv_{m} c$.
- If $a \equiv{ }_{m} b$ and $c \equiv{ }_{m} d$ then
$-a+c \equiv_{m} b+d$
- $a c \equiv_{m} b d$

Prime: An integer $n>1$ is prime iff its only positive divisors are 1 and n.
Unique Factorization Theorem: Every positive integer has a unique representation as a product of prime numbers (assuming that the primes in the product are listed with smaller ones first).
Greatest Common Divisor: $\operatorname{gcd}(a, b)$ is the largest common divisor of a and b.
Properties of gcd: For positive integers a and $b, \operatorname{gcd}(a, 0)=a$ and $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.
Multiplicative Inverse: For $m>0$ and $0 \leqslant a<m$, the multiplicative inverse of a modulo m is a number b with $0 \leqslant b<m$ such that $a b \equiv_{m} 1$. It exists if and only if $\operatorname{gcd}(a, m)=1$.

Task 1 - Divisibility

a) Circle the statements below that are true. Recall for $a, b \in \mathbb{Z}: a \mid b$ if and only if $\exists k \in \mathbb{Z}$ such that $b=k a$.
(a) $1 \mid 3$
(b) $3 \mid 1$
(c) $2 \mid 2018$
(d) $-2 \mid 12$
(e) $1 \cdot 2 \cdot 3 \cdot 4 \mid 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
b) Circle the statements below that are true. Recall for $a, b, m \in \mathbb{Z}$ and $m>0: a \equiv_{m} b$ if and only if $m \mid(a-b)$.
a) $-3 \equiv{ }_{3} 3$
b) $0 \equiv{ }_{9} 9000$
c) $44 \equiv_{77} 13$
d) $-58 \equiv_{5} 707$
e) $58 \equiv_{5} 707$

Task 2 - Division of Labor

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.ly/section4_2a. Then, translate it into an English proof.
b) For the domain of integers give an English proof that if $a b=1$ then $a=1$ or $a=-1$.
c) Give an English proof of the following claim over the domain of integers: if $a|b, b| a$, and $a \neq 0$, then $a=b$ or $a=-b$.

Task 3 - This is really mod

Let n and m be integers greater than 1, and suppose that $n \mid m$. Give an English proof that for any integers a and b, if $a \equiv_{m} b$, then $a \equiv_{n} b$.

Task 4 - Casing the Joint

a) Prove that for all integers $n, n^{2} \equiv_{4} 0$ or $n^{2} \equiv{ }_{4} 1$
b) Prove that for every integer $n, n^{2} \equiv_{3} 0$ or $n^{2} \equiv_{3} 1$.

Task 5 - GCD
Compute the following GCDs.
a) $\operatorname{gcd}(9,6)$
b) $\operatorname{gcd}(18,14)$
c) $\operatorname{gcd}(80,44)$
d) $\operatorname{gcd}(77,43)$

Task 6 - Multiplicative inverses
For each of the following choices of a and m, determine whether a has a multiplicative inverse modulo m. If yes, guess a multiplicative inverse of a modulo m and check your answer.
a) $a=3$ and $m=8$
b) $a=6$ and $m=28$
c) $a=5$ and $m=29$

Task 7 - Extended Euclidean Algorithm Practice

For each of the following choices of a and m, use the Extended Euclidean Algorithm to compute the multiplicative inverse of a modulo m. (In all cases below, $\operatorname{gcd}(m, a)=1$.)
a) $a=9$ and $m=17$
b) $a=9$ and $m=14$
c) $a=34$ and $m=43$

