Quiz Section 4: Number Theory

Review

Divisibility: For $d \neq 0$ we write $(d \mid a)$ iff there is an integer k such that a = kd.

Division Theorem: For integers a and b with b > 0, there are unique integers q and r such that a = qb + r and $0 \le r < b$. The remainder r is also written as $a \mod b$.

Mod Predicate (mod m): For integer m > 0 and integers a and b, we write $a \equiv_m b$ iff m|(a - b). This is equivalent to (a - b) = km for some integer k; it is also equivalent to a = b + km for some integer k.

Properties of $(\mod m)$:

- For m > 0, $a \equiv_m b$ iff $a \mod m = b \mod m$.
- If $a \equiv_m b$ and $b \equiv_m c$ then $a \equiv_m c$.
- If $a \equiv_m b$ and $c \equiv_m d$ then

$$-a + c \equiv_m b + d$$
$$-ac \equiv_m bd$$

Prime: An integer n > 1 is prime iff its only positive divisors are 1 and n.

Unique Factorization Theorem: Every positive integer has a unique representation as a product of prime numbers (assuming that the primes in the product are listed with smaller ones first).

Greatest Common Divisor: gcd(a, b) is the largest common divisor of a and b.

Properties of gcd: For positive integers a and b, gcd(a, 0) = a and $gcd(a, b) = gcd(b, a \mod b)$.

Multiplicative Inverse: For m > 0 and $0 \le a < m$, the *multiplicative inverse of a modulo* m is a number b with $0 \le b < m$ such that $ab \equiv_m 1$. It exists if and only if gcd(a,m) = 1.

Task 1 – Divisibility

- a) Circle the statements below that are true. Recall for $a, b \in \mathbb{Z}$: $a \mid b$ if and only if $\exists k \in \mathbb{Z}$ such that b = ka.
 - (a) 1 | 3
 - (b) 3 | 1
 - (c) 2 | 2018
 - (d) $-2 \mid 12$
 - (e) $1 \cdot 2 \cdot 3 \cdot 4 \mid 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$
- b) Circle the statements below that are true. Recall for $a, b, m \in \mathbb{Z}$ and m > 0: $a \equiv_m b$ if and only if $m \mid (a b)$.
 - a) $-3 \equiv_3 3$
 - **b)** $0 \equiv_9 9000$
 - **c)** $44 \equiv_{77} 13$
 - **d)** $-58 \equiv_5 707$
 - **e)** $58 \equiv_5 707$

Task 2 – Division of Labor

- a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$. You can find this on cozy here: https://bit.ly/section4_2a. Then, translate it into an English proof.
- **b)** For the domain of integers give an English proof that if ab = 1 then a = 1 or a = -1.
- c) Give an English proof of the following claim over the domain of integers: if $a \mid b, b \mid a$, and $a \neq 0$, then a = b or a = -b.

Task 3 – This is really mod

Let n and m be integers greater than 1, and suppose that $n \mid m$. Give an English proof that for any integers a and b, if $a \equiv_m b$, then $a \equiv_n b$.

Task 4 – Casing the Joint

- a) Prove that for all integers $n, n^2 \equiv_4 0$ or $n^2 \equiv_4 1$
- **b)** Prove that for every integer n, $n^2 \equiv_3 0$ or $n^2 \equiv_3 1$.

Task 5 – GCD

Compute the following GCDs.

- a) gcd(9,6)
- **b)** gcd(18, 14)
- c) gcd(80, 44)
- **d)** gcd(77, 43)

Task 6 – Multiplicative inverses

For each of the following choices of a and m, determine whether a has a multiplicative inverse modulo m. If yes, guess a multiplicative inverse of a modulo m and check your answer.

- a) a = 3 and m = 8
- **b)** a = 6 and m = 28
- c) a = 5 and m = 29

Task 7 – Extended Euclidean Algorithm Practice

For each of the following choices of a and m, use the Extended Euclidean Algorithm to compute the multiplicative inverse of a modulo m. (In all cases below, gcd(m, a) = 1.)

- a) a = 9 and m = 17
- **b)** a = 9 and m = 14
- c) a = 34 and m = 43