CSE 311 Section 4

English Proofs \& Number Theory

Announcements \& Reminders

- HW2
- Regrades open a day or two after
- HW3 due yesterday @ 11:00PM on Gradescope
- Use late days if you need to!
- Make sure you tagged pages on gradescope correctly
- HW4
- Releases tonight
- Due Friday 4/26 @11:00 PM
- Book One-on-Ones on the course homepage!

English Proofs

Writing a Proof (symbolically or in English)

- Don't just jump right in!

1. Look at the claim, and make sure you know:

- What every word in the claim means
- What the claim as a whole means

2. Translate the claim in predicate logic.
3. Next, write down the Proof Skeleton:

- Where to start
- What your target is

4. Then once you know what claim you are proving and your starting point and ending point, you can finally write the proof!

Helpful Tips for English Proofs

- Start by introducingyour assumptions
- Introduce variables with "let"
- "Let x be an arbitrary prime number..."
- Introduce assumptions with "suppose"
- "Suppose that $y \in A \wedge y \notin B \ldots$..."
- When you supply a value for an existence proof, use "Consider"
- "Consider $x=2$..."
- ALWAYS state what type your variable is (integer, set, etc.)
- Universal Quantifier means variable must be arbitrary
- Existential Quantifier means variable can be specific

Mod

$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$

Imagine a clock with m numbers

$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$

Imagine a clock with m numbers

$1(\bmod 3)$

VS

$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$

Imagine a clock with m numbers

$1(\bmod 3)$

VS

$\mathbf{a} \equiv \mathrm{B}(\bmod \mathrm{m})$

Imagine a clock with m numbers

$1(\bmod 3)$

VS

So we can say that $\mathbf{a} \equiv \mathbf{b}(\bmod \mathbf{m})$ where a and b are in the same position in the mod clock
$1 \equiv 10(\bmod 3)$

Divides

What if we "unroll" this clock?

$1(\bmod 3)$

Divides

What if we "unroll" this clock?

$1(\bmod 3)$

Divides

What if we "unroll" this clock?

Anything interesting?

Divides

What if we "unroll" this clock?

Anything interesting?
$3 \nmid 10$ and $3 \nmid 1$ BUT 3|9

$$
9 \div 3=3 \text { so } 3 \mid 9
$$

Divides

What if we "unroll" this clock?

So m divides the difference between a and b !

Anything interesting?
$3 \nmid 10$ and $3 \nmid 1$ BUT $3 \mid 9$

$$
9 \div 3=3 \text { so } 3 \mid 9
$$

Formalizing Mod and Divides

Equivalence in modular arithmetic

> Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.
> We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

Problem 1

(b) Identify the statements that are true for mod using the equivalence definition!
(i) $-3 \equiv 3(\bmod 3)$
(ii) $0 \equiv 9000(\bmod 9)$
(iii) $44 \equiv 13(\bmod 7)$
(iv) $-58 \equiv 707(\bmod 5)$
(v) $58 \equiv 707(\bmod 5)$

Problem 1

(b) Identify the statements that are true for mod using the equivalence definition!
(i) $-3 \equiv 3(\bmod 3)$
(ii) $0 \equiv 9000(\bmod 9)$
(iii) $44 \equiv 13(\bmod 7)$
(iv) $-58 \equiv 707(\bmod 5)$
(v) $58 \equiv 707(\bmod 5)$

Problem 1

(b) Identify the statements that are true for mod using the equivalence definition!
(i) $-3 \equiv 3(\bmod 3)$
(ii) $0 \equiv 9000(\bmod 9)$
(iii) $44 \equiv 13(\bmod 7)$
(iv) $-58 \equiv 707(\bmod 5)$
(v) $58 \equiv 707(\bmod 5)$
i. \quad True: $3|(3+3)=3| 6$

Problem 1

(b) Identify the statements that are true for mod using the equivalence definition!
(i) $-3 \equiv 3(\bmod 3)$
(ii) $0 \equiv 9000(\bmod 9)$
(iii) $44 \equiv 13(\bmod 7)$
(iv) $-58 \equiv 707(\bmod 5)$
(v) $58 \equiv 707(\bmod 5)$

```
i. \(\quad\) True: \(3|(3+3)=3| 6\)
ii. True: \(9|(9000-0)=9| 9000\)
iii. False: \(7 \nmid(13-44)=7 \nmid-31\)
```


Problem 1

(b) Identify the statements that are true for mod using the equivalence definition!

$$
\begin{array}{ll}
\text { (i) } & -3 \equiv 3(\bmod 3) \\
\text { (ii) } & 0 \equiv 9000(\bmod 9) \\
\text { (iii) } & 44 \equiv 13(\bmod 7) \\
\text { (iv) } & -58 \equiv 707(\bmod 5) \\
\text { (v) } & 58 \equiv 707(\bmod 5)
\end{array}
$$

```
i. True: 3|(3+3) = 3|6
ii. True: 9|(9000-0) = 9|9000
iii. False: 7}\(13-44)=7\not-3
iv. True: 5|(707+58) = 5|765
```


Problem 1

(b) Identify the statements that are true for mod using the equivalence definition!
(i) $-3 \equiv 3(\bmod 3)$
(ii) $0 \equiv 9000(\bmod 9)$
(iii) $44 \equiv 13(\bmod 7)$
(iv) $-58 \equiv 707(\bmod 5)$
(v) $58 \equiv 707(\bmod 5)$
i. True: $3|(3+3)=3| 6$
ii. True: $9|(9000-0)=9| 9000$
iii. False: $7 \nmid(13-44)=7 \nmid-31$
iv. True: $5|(707+58)=5| 765$
v. False: $5 \mid(707-58)=5 \nmid 649$

Proving Divisibility

"Unwrapping"

$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$

 $n \mid(b-a)$
 $(b-a)=n * k$

Equivalence in modular arithmetic
Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.
We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

Divides
For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

"Unwrapping"

This expression is generally easier to deal with

$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$
 $n \mid(b-a)$

(b-a) $=\mathrm{n}^{*} k$

Equivalence in modular arithmetic
Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and $n>0$.
We say $a \equiv b(\bmod n)$ if and only if $n \mid(b-a)$

Divides
For integers x, y we say $x \mid y$ (" x divides y ") iff there is an integer z such that $x z=y$.

Problem

Problem 2

Problem 2

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.ly/section4_2a. Then, translate it into an English proof.

Problem 2

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.1y/section4_2a. Then, translate it into an English proof.

Let x, y be arbitrary.
Suppose that $x \equiv y(\bmod 7)$.

Problem 2

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.ly/section4_2a. Then, translate it into an English proof.

Let x, y be arbitrary.
Suppose that $x \equiv y(\bmod 7)$. By definition of congruence, we get that $7 \mid x-y$,

Problem 2

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.1y/section4_2a. Then, translate it into an English proof.

Let x, y be arbitrary.
Suppose that $x \equiv y(\bmod 7)$. By definition of congruence, we get that $7 \mid x-y$, which through the definition of divides is $7 \mathrm{k}=\mathrm{x}-\mathrm{y}$ for some integer k .

Problem 2

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.1y/section4_2a. Then, translate it into an English proof.

Let x, y be arbitrary.
Suppose that $x \equiv y(\bmod 7)$. By definition of congruence, we get that $7 \mid x-y$, which through the definition of divides is $7 \mathrm{k}=\mathrm{x}-\mathrm{y}$ for some integer k . Multiplying both sides by -1 gives $7(-k)=y-x$.

Problem 2

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.1y/section4_2a. Then, translate it into an English proof.

Let x, y be arbitrary.
Suppose that $x \equiv y(\bmod 7)$. By definition of congruence, we get that $7 \mid x-y$, which through the definition of divides is $7 \mathrm{k}=\mathrm{x}-\mathrm{y}$ for some integer k . Multiplying both sides by -1 gives $7(-k)=y-x$.
Since (-k) is an integer, through the definition of divides, $7 \mid y-x$ holds

Problem 2

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.ly/section4_2a. Then, translate it into an English proof.

Let x, y be arbitrary.
Suppose that $x \equiv y(\bmod 7)$. By definition of congruence, we get that $7 \mid x-y$, which through the definition of divides is $7 \mathrm{k}=\mathrm{x}-\mathrm{y}$ for some integer k . Multiplying both sides by -1 gives $7(-k)=y-x$.
Since ($-k$) is an integer, through the definition of divides, $7 \mid y-x$ holds, which, through the definition of congruence, means that $\mathrm{y} \equiv \mathrm{x}(\bmod 7)$.

Problem 2

a) Write a formal proof in cozy of the following claim: if $x \equiv_{7} y$, then $y \equiv_{7} x$. You can find this on cozy here: https://bit.1y/section4_2a. Then, translate it into an English proof.

Let x, y be arbitrary.
Suppose that $x \equiv y(\bmod 7)$. By definition of congruence, we get that $7 \mid x-y$, which through the definition of divides is $7 \mathrm{k}=\mathrm{x}-\mathrm{y}$ for some integer k .
Multiplying both sides by -1 gives $7(-k)=y-x$.
Since (-k) is an integer, through the definition of divides, $7 \mid y-x$ holds, which, through the definition of congruence, means that $y \equiv x(\bmod 7)$.
Since x and y were arbitrary, the claim holds

Problem 2

b) Prove that if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$, where a and b are integers and $\mathrm{a} \neq 0$, then $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}=-\mathrm{b}$.

Problem 2

(b) Prove that if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$, where a and b are integers and $\mathrm{a} \neq 0$, then $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}=-\mathrm{b}$.
(1) Understand what this claim means
(2) Write your start and end goal
(3) Write the skeleton
(4) Fill in the skeleton

Problem 2

(b) Prove that if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$, where a and b are integers, then $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}=-\mathrm{b}$.
(1) Understand what this claim means
$3 \mid 3$ and $3 \mid 3$ so $3=3$
Or
$3 \mid-3$ and $-3 \mid 3$ so $3=-(-3)$
(1) Write your start and end goal
(1) Write the skeleton
(1) Fill in the skeleton

Problem 2

Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(1) Understand what this claim means
$3 \mid 3$ and $3 \mid 3$ so $3=3$
Or
$3 \mid-3$ and $-3 \mid 3$ so $3=-(-3)$
(1) Write your start and end goal

Start: some a and b where a|b and b|a
End: show that $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}=-\mathrm{b}$
(1) Write the skeleton
(1) Fill in the skeleton

Problem 2

Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(3) Write the skeleton

Problem 2

Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(3) Write the skeleton

Suppose that for some arbitrary integers a and b where $a \mid b$ and $b \mid a$
\ldots
...
...

So we get $b=-a$ or $b=a$
Since a and b were arbitrary, the claim holds

Problem 2

Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(4) Fill in the skeleton

Suppose that for some arbitrary integers a and b where $a \mid b$ and $b \mid a$ By the definition of divides, we have $b=k a$ and $a=j b$, for some integers k, j

So we get $b=-a$ or $b=a$
Since a and b were arbitrary, the claim holds

Problem 2

Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(4) Fill in the skeleton

Suppose that for some arbitrary integers a and b where $a \mid b$ and $b \mid a$ By the definition of divides, we have $b=k a$ and $a=j b$, for some integers k, j

So we get $b=-a$ or $b=a$
Can we prove something about k and j to get to $b=-a$ or $b=a$?

Since a and b were arbitrary, the claim holds

Problem 2

Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(4) Fill in the skeleton

Suppose that for some arbitrary integers a and b where $a \mid b$ and $b \mid a$ By the definition of divides, we have $b=k a$ and $a=j b$, for some integers k, j
Substituting $b, a=j(k a)$

So we get $b=-a$ or $b=a$
Since a and b were arbitrary, the claim holds

Problem 2

Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(4) Fill in the skeleton

Suppose that for some arbitrary integers a and b where $a \mid b$ and $b \mid a$ By the definition of divides, we have $b=k a$ and $a=j b$, for some integers k, j
Substituting $b, a=j(k a)$
Dividing both sides by a, we get $1=j k$.

What do we need to
say about k and j to get
to $b=-a$ or $b=a$?

So we get $b=-a$ or $b=a$
Since a and b were arbitrary, the claim holds

Problem 2

Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(4) Fill in the skeleton

Suppose that for some arbitrary integers a and b where $a \mid b$ and $b \mid a$ By the definition of divides, we have $b=k a$ and $a=j b$, for some integers k, j.
Substituting $b, a=j(k a)$
Dividing both sides by a, we get $1=j k$.
We can say that $1 / j=k$
This expression only holds when j and k are either -1 or 1

$$
\begin{aligned}
& 1 / 3 \neq \text { Integer } \\
& 1 / 1=\text { Integer }
\end{aligned}
$$

So we get $b=-a$ or $b=a$
Since a and b were arbitrary, the claim holds

Problem 2

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers greater than 0 , then a $=b$ or $a=-b$.
(4) Fill in the skeleton

Suppose that for some arbitrary integers a and b where $a \mid b$ and $b \mid a$ By the definition of divides, we have $b=k a$ and $a=j b$, for some integers k, j
Substituting b, $a=j(k a)$
Dividing both sides by a, we get $1=j k$.
We can say that $1 / \mathrm{j}=\mathrm{k}$
k must be an integer and we must get an integer from $1 / \mathrm{j}$
We know that j and k must be either 1 or -1
So we get $b=-a$ or $b=a$
Since a and b were arbitrary, the claim holds

Problem 3

Problem 3

Let n and m be integers greater than 1 , and suppose that $\mathrm{n} \mid \mathrm{m}$. Give an English proof that for any integers a and b , if $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, then $\mathrm{a} \equiv \mathrm{b}$ $(\bmod n)$.

Problem 3

Let n and m be integers greater than 1 , and suppose that $\mathrm{n} \mid \mathrm{m}$. Give an English proof that for any integers a and b , if $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, then $\mathrm{a} \equiv \mathrm{b}$ $(\bmod n)$.

Let a and b be arbitrary integers and $\mathrm{n}>1$ and $\mathrm{m}>1$. Suppose that $\mathrm{a} \equiv \mathrm{b}$ (mod m).

Since a and b were arbitrary, the claim holds

Problem 3

Let n and m be integers greater than 1 , and suppose that $\mathrm{n} \mid \mathrm{m}$. Give an English proof that for any integers a and b, if $a \equiv b(\bmod m)$, then $a \equiv b$ $(\bmod n)$.

Let a and b be arbitrary integers and $\mathrm{n}>1$ and $\mathrm{m}>1$. Suppose that $\mathrm{a} \equiv \mathrm{b}$ (mod m).
Then, by definition of mod, m | $a-b$), so there exists an integer k such that $a-b=m k$.

Since a and b were arbitrary, the claim holds

Problem 3

Let n and m be integers greater than 1 , and suppose that $\mathrm{n} \mid \mathrm{m}$. Give an English proof that for any integers a and b , if $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, then $\mathrm{a} \equiv \mathrm{b}$ $(\bmod n)$.

Let a and b be arbitrary integers and $\mathrm{n}>1$ and $\mathrm{m}>1$. Suppoc (mod m).
Then, by definition of mod, m | $(a-b)$, so there exists an intes $\mathrm{a}-\mathrm{b}=\mathrm{mk}$.

Since a and b were arbitrary, the claim holds
...
...

Try to work a step backwards when you can!

Problem 3

Let n and m be integers greater than 1 , and suppose that $\mathrm{n} \mid \mathrm{m}$. Give an English proof that for any integers a and b , if $\mathrm{a} \equiv \mathrm{b}(\bmod m)$, then $\mathrm{a} \equiv \mathrm{b}$ $(\bmod n)$.

Let a and b be arbitrary integers and $\mathrm{n}>1$ and $\mathrm{m}>1$. Suppoc (mod m).
Then, by definition of mod, m | $(a-b)$, so there exists an intes $a-b=m k$.

So, by definition of mod equivalence, $\mathrm{n} \mid(\mathrm{a}-\mathrm{b})$ so $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
Since a and b were arbitrary, the claim holds
...

Try to work a step backwards when you can!

Problem 3

Let n and m be integers greater than 1 , and suppose that $\mathrm{n} \mid \mathrm{m}$. Give an English proof that for any integers a and b, if $a \equiv b(\bmod m)$, then $a \equiv b$ $(\bmod n)$.

Let a and b be arbitrary integers and $\mathrm{n}>1$ and $\mathrm{m}>1$. Suppose that $\mathrm{a} \equiv \mathrm{b}$ (mod m).
Then, by definition of mod, m | $a-b)$, so there exists an integer k such that $a-b=m k$.
Also, since $\mathrm{n} \mid \mathrm{m}$, there is an integer j such that $\mathrm{m}=\mathrm{jn}$. Thus, we have.
$a-b=(j n) k$
$a-b=(k j) n$
So, by definition of mod equivalence, $\mathrm{n} \mid(\mathrm{a}-\mathrm{b})$ so $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$
Since a and b were arbitrary, the claim holds

Proof By Cases

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(1) Understand what this claim means
(2) Write your start and end goal
(3) Write the skeleton
(4) Fill in the skeleton

Problem 4:

(a) Prove that for all integers $n, n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
(1) Understand what this claim means
(3) ${ }^{2}$ 三 $1(\bmod 4)$
$(2)^{2} \equiv 0(\bmod 4)$
If you square an even integer, you get $0(\bmod 4)$
If you square an odd integer, you get $1(\bmod 4)$
(1) Write your start and end goal
(2) Write the skeleton
(3) Fill in the skeleton

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(1) Understand what this claim means
(3) ${ }^{2}$ 三 $1(\bmod 4)$
$(2)^{2} \equiv 0(\bmod 4)$
If you square an even integer, you get $0(\bmod 4)$
If you square an odd integer, you get $1(\bmod 4)$
(1) Write your start and end goal

Start: Some integer
End: Prove the integer ${ }^{2}$ will be either $\mathbf{0}(\bmod 4)$ or $\mathbf{1}(\bmod 4)$
(1) Write the skeleton
(2) Fill in the skeleton

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(3) Write the skeleton

Let n be an arbitrary integer. We go by cases.
Case 1: \boldsymbol{n} is even... $\mathrm{n}^{2} \equiv 0(\bmod 4)$
Case 2: \boldsymbol{n} is odd $\ldots \mathbf{n}^{2} \equiv \mathbf{1}(\bmod 4)$

In all cases $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
Since n was arbitrary, the claim holds
(4) Fill in the skeleton

Problem 4:

(a) Prove that for all integers $n, n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 1: n is even
Then $\mathrm{n}=2 \mathrm{k}$ for some integer k

Then by the definition of congruence, $\mathrm{n}^{2} \equiv \mathbf{=}(\bmod 4)$

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 1: n is even
Then $\mathrm{n}=2 \mathrm{k}$ for some integer k
By the definition of divides so $4 \mid \mathrm{n}^{2}$ Then by the definition of congruence, $\mathrm{n}^{2} \overline{=} \mathbf{0}(\bmod 4)$

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 1: n is even
Then $\mathrm{n}=2 \mathrm{k}$ for some integer k

By the definition of divides so $4 \mid \mathrm{n}^{2}$ Then by the definition of congruence, $\mathrm{n}^{2} \equiv 0(\bmod 4)$

Work one step backwards to "unwrap"

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 1: n is even
Then $\mathrm{n}=2 \mathrm{k}$ for some integer k
Then $\mathrm{n}^{2}=(2 \mathrm{k})^{2}=4 \mathrm{k}^{2}$
Since k is an integer, k^{2} is an integer.
By the definition of divides, $4 \mid 4 \mathrm{k}^{2}$ so $4 \mid \mathrm{n}^{2}$
Then by the definition of congruence, $\mathrm{n}^{2} \equiv \mathbf{0}(\bmod 4)$.
Thus $\mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$.

Problem 4:

(a) Prove that for all integers $n, n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 2: n is odd
Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer k
...
...
n^{2} ㅡㅡㄹ $1(\bmod 4)$

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 2: n is odd
Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer k
...
...
By the definition of divides, 4| $\mathrm{n}^{2}-1$

Work one step backwards to
"unwrap"

Then by the definition of congruence, n^{2} $\mathbf{\equiv} \mathbf{1 (\operatorname { m o d } 4)}$
Thus $\mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$.

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 2: n is odd
Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer k
...
So we can say that $4 * j=n^{2}-1$
By the definition of divides, $4 \mid \mathrm{n}^{2}-1$

Work one step backwards to
"unwrap"

Then by the definition of congruence, n^{2} $\mathbf{D}(\bmod 4)$
Thus $\mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$.

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 2: \mathbf{n} is odd
Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer k
Then $\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=4\left(\mathrm{k}^{2}+\mathrm{k}\right)+1$

So we can say that $4 * j=n^{2}-1$
By the definition of divides, $4 \mid \mathrm{n}^{2}-1$
Then by the definition of congruence, n^{2} $\mathbf{1}(\bmod 4)$
Thus $\mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$.

Problem 4:

(a) Prove that for all integers $n, \mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer
Case 2: \mathbf{n} is odd
Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer k
Then $\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=4\left(\mathrm{k}^{2}+\mathrm{k}\right)+1$
So $n^{2}-1=4\left(k^{2}+k\right)$
Since k is an integer, we can say $j=k^{2}+k$ where j is an integer.
So we can say that $4 * j=n^{2}-1$
By the definition of divides, $4 \mid \mathrm{n}^{2}-1$
Then by the definition of congruence, n^{2} $\mathbf{1}(\bmod 4)$
Thus $\mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$.

Problem 4:

(a) Prove that for all integers $n, n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$
(4) Fill in the skeleton

Let n be an arbitrary integer

Case 1: n is even

Then $\mathrm{n}=2 \mathrm{k}$ for some integer k
Then $\mathrm{n}^{2}=(2 \mathrm{k})^{2}=4 \mathrm{k}^{2}$
Since k is an integer, k^{2} is an integer.
By the definition of divides, $4 \mid 4 k^{2}$ so $4 \mid n^{2}$
Then by the definition of congruence, $n^{2} \equiv 0(\bmod 4)$
Thus $\mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$

Case 2: \mathbf{n} is odd

Then $\mathrm{n}=2 \mathrm{k}+1$ for some integer k
Then $\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=4\left(\mathrm{k}^{2}+\mathrm{k}\right)+1$
So $n^{2}-1=4\left(k^{2}+k\right)$
Since k is an integer, we can say $\mathrm{j}=\mathrm{k}^{2}+\mathrm{k}$ where j is an integer.
So we can say that $4 * j=n^{2}-1$
By the definition of divides, 4| $\mathrm{n}^{2}-1$
Then by the definition of congruence, $\mathrm{n}^{2} \equiv 1(\bmod 4)$
Thus $\mathrm{n}^{2} \equiv 0(\bmod 4)$ or $\mathrm{n}^{2} \equiv 1(\bmod 4)$
In either case, $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$. Since n was arbitrary, the claim holds

That's All Folks

