CSE 311 Section 2

Logic and Equivalences

Announcements \& Reminders

- Sections are Graded
- You will be graded on section participation, so please try to come ©
- HW1 due yesterday on Gradescope
- 1 late day per HW (3 late days total); just submit late to use late day
- HW 2 released today, due next Wednesday @ 11 PM
- Check the course website for OH times!
- There are office hours every day, so come visit if you have questions!
- 1 on 1 office hours will start soon: More info to come

References

- Helpful reference sheets can be found on the course website!
- https://courses.cs.washington.edu/courses/cse311/23au/resources/
- How to LaTeX (found on Assignments page of website):
- https://courses.cs.washington.edu/courses/cse311/23au/assignments/HowToLaTeX.pdf
- Equivalence Reference Sheet
- https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-logical equiv.pdf
- https://courses.cs.washington.edu/courses/cse311/23au/resources/logicalConnectPoster.pdf
- Boolean Algebra Reference Sheet
- https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-boolean-al g.pdf
- Plus more!

Tautology if it is always true

Symbolic Proofs with Cozy

Navigate to: https://cozy.cs.washington.edu/service/home

Problem 1 - Equivalences

a) $p \rightarrow \neg p \wedge \neg p \rightarrow p$ vs. F: tinyurl.com/CSE311S2

These identities hold for all propositions p, q, r

- Identity
- $p \wedge \mathrm{~T} \equiv p$
- $p \vee \mathrm{~F} \equiv p$
- Domination
- $p \vee \mathrm{~T} \equiv \mathrm{~T}$
- $p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
- $p \vee p \equiv p$
- $p \wedge p \equiv p$
- Commutative
- $p \vee q \equiv q \vee p$
- $p \wedge q \equiv q \wedge p$
- Associative
- $(p \vee q) \vee r \equiv p \vee(q \vee r)$
- $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
- $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
- $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
- $p \vee(p \wedge q) \equiv p$
- $p \wedge(p \vee q) \equiv p$
- Negation
- $p \vee \neg p \equiv \mathrm{~T}$
- $p \wedge \neg p \equiv \mathrm{~F}$
- DeMorgan's Laws
- $\neg(p \vee q) \equiv \neg p \wedge \neg q$
- $\neg(p \wedge q) \equiv \neg p \vee \neg q$
- Double Negation
- $\neg \neg p \equiv p$
- Law of Implication
- $p \rightarrow q \equiv \neg p \vee q$
- Contrapositive
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Problem 1 - Equivalences

a) $p \rightarrow \neg p \wedge \neg p \rightarrow p$ vs. F

$$
\begin{aligned}
(p \rightarrow \neg p) \wedge(\neg p \rightarrow p) & \equiv(\neg p \vee \neg p) \wedge(\neg \neg p \vee p) \\
& \equiv(\neg p \vee \neg p) \wedge(p \vee p) \\
& \equiv \neg p \wedge p \\
& \equiv p \wedge \neg p \\
& \equiv \mathrm{~F}
\end{aligned}
$$

Law of Implication
Double Negation
Idempotence
Commutativity
Negation

Problem 1 - Equivalences

b) $\quad \neg p \rightarrow(q \rightarrow r) \equiv q \rightarrow(p \vee r) \quad$ The link:

tinyurl.com/CSE311S2b

These identities hold for all propositions p, q, r

Remember

these identities!

- Identity
- $p \wedge \mathrm{~T} \equiv p$
- $p \vee \mathrm{~F} \equiv p$
- Domination
- $p \vee \mathrm{~T} \equiv \mathrm{~T}$
- $p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent
- $p \vee p \equiv p$
- $p \wedge p \equiv p$
- Commutative
- $p \vee q \equiv q \vee p$
- $p \wedge q \equiv q \wedge p$
- Associative
- $(p \vee q) \vee r \equiv p \vee(q \vee r)$
- $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive
- $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
- $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
- Absorption
- $p \vee(p \wedge q) \equiv p$
- $p \wedge(p \vee q) \equiv p$
- Negation
- $p \vee \neg p \equiv \mathrm{~T}$
- $p \wedge \neg p \equiv \mathrm{~F}$
- DeMorgan's Laws
- $\neg(p \vee q) \equiv \neg p \wedge \neg q$
- $\neg(p \wedge q) \equiv \neg p \vee \neg q$
- Double Negation
- $\neg \neg p \equiv p$
- Law of Implication
- $p \rightarrow q \equiv \neg p \vee q$
- Contrapositive
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Problem 1 - Equivalences

b) $\quad \neg p \rightarrow(q \rightarrow r) \equiv q \rightarrow(p \vee r)$
(i)

p	r	s	$\neg p$	$(s \rightarrow r)$	$(p \vee r)$	$\neg p \rightarrow(s \rightarrow r)$	$s \rightarrow(p \vee r)$
T	T	T	F	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	F	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	T	T	T	T	T
F	F	T	T	F	F	F	F
F	F	F	T	T	F	T	T

(ii)

$$
\begin{aligned}
& \neg p \rightarrow(s \rightarrow r) \quad \equiv \neg \neg p \vee(s \rightarrow r) \\
& \text { Law of Implication } \\
& \equiv p \vee(s \rightarrow r) \\
& \text { Double Negation } \\
& \equiv p \vee(\neg s \vee r) \quad \text { Law of Implication } \\
& \equiv(p \vee \neg s) \vee r \quad \text { Associativity } \\
& \equiv(\neg s \vee p) \vee r \quad \text { Commutativity } \\
& \equiv \neg s \vee(p \vee r) \\
& \text { Associativity } \\
& \equiv s \rightarrow(p \vee r) \\
& \text { Law of Implication }
\end{aligned}
$$

Problem 5

Problem 5 - Canonical Forms

Consider the functions $F(A, B, C)$ and $G(A, B, C)$ specified by the following truth table:
a) Write the DNF and CNF expressions for $F(A, B, C)$.
b) Write the DNF and CNF expressionsfor $G(A, B, C)$.

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{F}(\mathbf{A}, \boldsymbol{B}, \mathbf{C})$	$\mathbf{G}(\boldsymbol{A}, \boldsymbol{B}, \mathbf{C})$
T	T	T	T	F
T	T	F	T	T
T	F	T	F	F
T	F	F	F	F
F	T	T	T	T
F	T	F	T	F
F	F	T	F	T
F	F	F	T	F

Problem 5 - Canonical Forms

b) Write the CNF expressions for $G(A, B, C)$

Work on part (b) with the people around you, and then we'll go over it

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{G}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})$
T	T	T	F
T	T	F	T
T	F	T	F
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	T
F	F	F	F

Problem 5 - Canonical Forms

CNF: (AND of ORs)

$\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$	A	B	C	$G(A, B, C)$
	T	T	T	F
	T	T	F	T
$\left(a^{\prime}+b+c^{\prime}\right)$	T	F	T	F
($\mathrm{a}^{\prime}+\mathrm{b}+\mathrm{c}$)	T	F	F	F
(a+b' ${ }^{\text {c }}$)	F	T	T	T
	F	T	F	F
	F	F	T	T
(a+b+c)	F	F	F	F

$$
\left(a^{\prime}+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c)
$$

Problem 5 - Canonical Forms

(c) Simplify the CNF form for $G(A, B, C)$ that you found in (b)

Remember these identities!

Uniting	
$X \bullet Y+X \bullet Y^{\prime}=X$	
	$(X+Y) \bullet\left(X+Y^{\prime}\right)=X$

Absorbtion
$X+X \bullet Y=X$
$\left(X+Y^{\prime}\right) \bullet Y=X \bullet Y$
$X \bullet(X+Y)=X$
$\left(X \bullet Y^{\prime}\right)+Y=X+Y$

Problem 5 - Canonical Forms

(c) Simplify the CNF form for $G(A, B, C)$ that you found in (b)

CNF from (b):

$$
\left(a^{\prime}+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c)
$$

Problem 5 - Canonical Forms

(c) Simplify the CNF form for $G(A, B, C)$ that you found in (b)

CNF from (b):

$$
\begin{aligned}
& \left(a^{\prime}+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c) \\
\equiv & \left(a^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c)
\end{aligned}
$$

Uniting

Problem 5 - Canonical Forms

(c) Simplify the CNF form for $G(A, B, C)$ that you found in (b)

CNF from (b):

$$
\begin{array}{rlr}
& \left(a^{\prime}+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c) & \\
\equiv & \left(a^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c) & \\
\equiv & \left(a^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c)(a+b+c) & \\
\text { Uniting }
\end{array}
$$

Problem 5 - Canonical Forms

(c) Simplify the CNF form for $G(A, B, C)$ that you found in (b)

CNF from (b):

$$
\begin{array}{rlr}
& \left(a^{\prime}+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c^{\prime}\right)(a+b+c) & \\
\equiv & \left(a^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c) & \text { Uniting } \\
\equiv & \left(a^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c)(a+b+c) & \\
\equiv & \left(a^{\prime}+c^{\prime}\right)(b+c)(a+c) &
\end{array}
$$

Problem 5 - Canonical Forms

(c) Simplify the CNF form for $G(A, B, C)$ that you found in (b)

CNF from (b):

$$
\begin{array}{ll}
& \left(a^{\prime}+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c^{\prime}\right)(a+b+c) \\
\equiv & \left(a^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c) \\
\equiv & \left(a^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c\right)(a+b+c)(a+b+c) \\
\equiv & \left(a^{\prime}+c^{\prime}\right)(b+c)(a+c) \\
\equiv & \left(a^{\prime}+c^{\prime}\right)(a b+c)
\end{array}
$$

Problem 2

Problem 2 - Non-Equivalence

a) $\mathrm{p} \rightarrow \mathrm{r}$ vs. $\mathrm{r} \rightarrow \mathrm{p}$

Problem 2 - Non-Equivalence

a) $\mathrm{p} \rightarrow \mathrm{r}$ vs. $\mathrm{r} \rightarrow \mathrm{p}$

p	r	$\mathrm{p} \rightarrow r$	$\mathrm{r} \rightarrow \mathrm{p}$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

Problem 2 - Non-Equivalence

a) $\mathrm{p} \rightarrow \mathrm{r}$ vs. $\mathrm{r} \rightarrow \mathrm{p}$

p	r	$\mathrm{p} \rightarrow \mathrm{r}$	$\mathrm{r} \rightarrow \mathrm{p}$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

They differ when P is true and R is false as the first is vacuously true, while the other is false

That's All, Folks!

Thanks for coming to section this week! Any questions?

