CSE 311 Section 2

Logic and Equivalences

Announcements & Reminders

- Sections are Graded
 - \circ You will be graded on section participation, so please try to come \odot
- HW1 due yesterday on Gradescope
 - 1 late day per HW (3 late days total); just submit late to use late day
- HW 2 released today, due next Wednesday @ 11 PM
- Check the course website for OH times!
 - There are office hours every day, so come visit if you have questions!
- 1 on 1 office hours will start soon: More info to come

References

- Helpful reference sheets can be found on the course website!
 - <u>https://courses.cs.washington.edu/courses/cse311/23au/resources/</u>
- How to LaTeX (found on Assignments page of website):
 - https://courses.cs.washington.edu/courses/cse311/23au/assignments/HowToLaTeX.pdf
- Equivalence Reference Sheet
 - https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-logical_equiv.pdf
 - https://courses.cs.washington.edu/courses/cse311/23au/resources/logicalConnectPoster.pdf
- Boolean Algebra Reference Sheet
 - <u>https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-boolean-alg.pdf</u>
- Plus more!

Tautology if it is always true Contradiction if it is always false Contingency if it can be either true or false

Symbolic Proofs with Cozy

Navigate to: https://cozy.cs.washington.edu/service/home

$p \rightarrow \neg p \land \neg p \rightarrow p vs. F$: tinyurl.com/CSE311S2 a)

These identities hold for all propositions p, q, r

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \land p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \land q \equiv q \land p$ $p \land \neg p \equiv F$

- Associative
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Negation
- $p \lor \neg p \equiv T$

- DeMorgan's Laws
 - $\neg (p \lor q) \equiv \neg p \land \neg q$
 - $\neg (p \land q) \equiv \neg p \lor \neg q$
- Double Negation
 - $\neg \neg p \equiv p$
- Law of Implication
 - $p \rightarrow q \equiv \neg p \lor q$
- Contrapositive
 - $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Remember these identities!

a)
$$p \rightarrow \neg p \land \neg p \rightarrow p vs. F$$

$$\begin{array}{lll} (p \rightarrow \neg p) \land (\neg p \rightarrow p) & \equiv & (\neg p \lor \neg p) \land (\neg \neg p \lor p) & \text{Law of Implication} \\ & \equiv & (\neg p \lor \neg p) \land (p \lor p) & \text{Double Negation} \\ & \equiv & \neg p \land p & \text{Idempotence} \\ & \equiv & p \land \neg p & \text{Commutativity} \\ & \equiv & \mathsf{F} & \text{Negation} \end{array}$$

b) $\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$

tinyurl.com/CSE311S2b

These identities hold for all propositions p, q, r

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \land p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \land q \equiv q \land p$

- Associative
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$

The link:

- $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Negation
 - $p \lor \neg p \equiv T$
- $p \land \neg p \equiv F$

DeMorgan's Laws

•
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

•
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

- Double Negation
 - $\neg \neg p \equiv p$
- Law of Implication
 - $p \to q \equiv \neg p \lor q$
- Contrapositive
 - $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Remember these identities!

b)
$$\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$$

p	r	s	$\neg p$	$(s \rightarrow r)$	$(p \lor r)$	$\neg p \rightarrow (s \rightarrow r)$	$s \to (p \lor r)$
Т	Т	Т	F	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т
Т	F	Т	F	F	Т	Т	Т
Т	F	F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т	Т
F	F	Т	Т	F	F	F	F
F	F	F	Т	Т	F	Т	Т

(ii)

$$\begin{array}{ccc} \neg p \rightarrow (s \rightarrow r) & \equiv & \neg \neg p \lor (s \rightarrow r) & \text{Lar} \\ & \equiv & p \lor (s \rightarrow r) & \text{Dot} \\ & \equiv & p \lor (\neg s \lor r) & \text{Lar} \\ & \equiv & (p \lor \neg s) \lor r & \text{As} \\ & \equiv & (\neg s \lor p) \lor r & \text{Co} \\ & \equiv & \neg s \lor (p \lor r) & \text{As} \\ & \equiv & s \rightarrow (p \lor r) & \text{Lar} \end{array}$$

Law of Implication Double Negation Law of Implication Associativity Commutativity Associativity Law of Implication

Problem 5

Consider the functions F(A, B, C) and G(A, B, C) specified by the following truth table:

- a) Write the DNF and CNF expressions for *F*(*A*, *B*, *C*).
- b) Write the DNF and CNF expressions for *G*(*A*, *B*, *C*).

Α	В	С	F(A,B,C)	G(A,B,C)
Т	Т	Т	Т	F
Т	Т	F	Т	Т
Т	F	Т	F	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	F	Т	F
F	F	Т	F	Т
F	F	F	Т	F

b) Write the **CNF** expressions for G(A,B,C)

Work on part (b) with the people around you, and then we'll go over it together!

Α	B	С	<i>G(A,B,C)</i>		
Т	Т	Т	F		
Т	Т	F	Т		
Т	F	Т	F		
Т	F	F	F		
F	Т	Т	Т		
F	Т	F	F		
F	F	Т	Т		
F	F	F	F		

(a'+b'+c')(a'+b+c')(a'+b+c)(a+b'+c)(a+b+c)

(c) Simplify the CNF form for G(A,B,C) that you found in (b)

Remember these identities!

Null	Idempotency			
X + 1 = 1	X + X = X			
$X \bullet 0 = 0$	$X \bullet X = X$			
Involution				
(X')' = X	$X \bullet Y + X \bullet Y' = X$ $(X + Y) \bullet (X + Y') = X$			
Absorbtion				
$X + X \bullet Y = X$	DeMorgan			
$(X+Y')\bullet Y=X\bullet Y$	$(X+Y+\cdots)'=X'\bullet Y'\bullet\cdots$			
$X \bullet (X + Y) = X$	$(X \bullet Y \bullet \cdots)' = X' + Y' + \cdots$			
$(X \bullet Y') + Y = X + Y$				

(c) Simplify the CNF form for G(A,B,C) that you found in (b)

CNF from (b):

(a'+b'+c')(a'+b+c')(a'+b+c)(a+b'+c)(a+b+c)

(c) Simplify the CNF form for G(A,B,C) that you found in (b)

CNF from (b):

(a'+b'+c')(a'+b+c')(a'+b+c)(a+b'+c)(a+b+c)= (a'+c')(a'+b+c)(a+b'+c)(a+b+c)

Uniting

(c) Simplify the CNF form for G(A,B,C) that you found in (b)

CNF from (b):

(a'+b'+c')(a'+b+c')(a'+b+c)(a+b'+c)(a+b+c) $\equiv (a'+c')(a'+b+c)(a+b'+c)(a+b+c)$ Uniting $\equiv (a'+c')(a'+b+c)(a+b'+c)(a+b+c) (a+b+c)$ Idempotency

(c) Simplify the CNF form for G(A,B,C) that you found in (b)

```
CNF from (b):
```

```
(a'+b'+c')(a'+b+c')(a'+b+c)(a+b'+c')(a+b+c)

\equiv (a'+c')(a'+b+c)(a+b'+c)(a+b+c) Uniting

\equiv (a'+c')(a'+b+c)(a+b'+c)(a+b+c) (a+b+c) Idempotency

\equiv (a'+c') (b+c) (a+c) Uniting
```

(c) Simplify the CNF form for G(A,B,C) that you found in (b)

```
CNF from (b):
```

```
\begin{array}{ll} (a'+b'+c')(a'+b+c')(a'+b+c)(a+b'+c')(a+b+c) \\ \equiv (a'+c')(a'+b+c)(a+b'+c)(a+b+c) & Uniting \\ \equiv (a'+c')(a'+b+c)(a+b'+c)(a+b+c) & (a+b+c) \\ \equiv (a'+c')(b+c)(a+c) & Uniting \\ \equiv (a'+c')(ab+c) & Distributivity \end{array}
```

Problem 2

Problem 2 - Non-Equivalence

a) $p \rightarrow r vs. r \rightarrow p$

Problem 2 - Non-Equivalence

a) $p \rightarrow r vs. r \rightarrow p$

Problem 2 - Non-Equivalence

a) $p \rightarrow r vs. r \rightarrow p$

They differ when P is true and R is false as the first is vacuously true, while the other is false

That's All, Folks!

Thanks for coming to section this week! Any questions?