
CSE 311: Foundations of Computing I Spring 2024

Problem Set 6
Due: Wednesday, May 15th by 11:00pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

– Submit a single PDF file containing your solutions to Tasks 1–6 (and optionally 7). Follow the
prompt on Gradescope to link tasks to your pages.

Task 1 – Barking Up the Strong Tree [20 pts]

The function fpmq is defined for m P N recursively as follows:

fp0q “ 1

fp1q “ 2

fpmq “ fpm´ 1q ` 2 ¨ fpm´ 2q if m ě 2

Use strong induction to prove that

@n P N pfpnq “ 2nq

Write an English proof, following the template given in lecture.

Task 2 – Live Strong and Prosper [20 pts]

The function gpmq is defined for integers m ě 1 recursively as follows:

gp1q “ 0

gp2lq “ 1` gplq where l ě 1 is an integer

gp2l ` 1q “ 1` gplq where l ě 1 is an integer

The first line gives the definition of g for m “ 1, the second line gives the definition for even m, and
the third line gives the definition for odd m ě 3. Since these three cases are mutually exclusive and
exhaustive, they define g completely.

Use strong induction on n to show that 2gpnq ď n for all integers n ě 1.

Write an English proof, following the template given in lecture.

1

Recall the definition of lists of numbers from lecture:

Basis Step: nil P List
Recursive Step: for any a P Z, if L P List, then a :: L P List.

For example, the list r1, 2, 3s would be created recursively from the empty list as 1 :: p2 :: p3 :: nilqq.
We will consider “::” to associate to the right, so 1 :: 2 :: 3 :: nil means the same thing.

The next two problems use three recursively-defined functions. The first is len, which calculates the
length of the list. It is defined recursively as follows:

lenpnilq :“ 0
lenpa :: Lq :“ 1` lenpLq @a P Z,@L P List

The second function, concat, which concatenates two lists into a single list, is defined by:

concatpnil, Rq :“ R @R P List
concatpa :: L,Rq :“ a :: concatpL,Rq @a P Z,@L,R P List

For example, we get concatp1 :: 2 :: nil, 3 :: nilq “ 1 :: 2 :: 3 :: nil from these definitions.

The third function, positives, which returns only the positive numbers in the list, is defined by:

positivespnilq :“ nil

positivespa :: Lq :“ positivespLq if a ď 0 @a P Z,@L P List
positivespa :: Lq :“ a :: positivespLq if a ą 0 @a P Z,@L P List

For example, from these definitions, we get positivesp´1 :: 2 :: ´3 :: nilq “ 2 :: nil.

Task 3 – List Me By a Mile [20 pts]

a) Write a chain of equalities, citing the appropriate definitions, showing that

concatp1 :: 2 :: nil, 3 :: nilq “ 1 :: 2 :: 3 :: nil

b) Write a chain of equalities, citing the appropriate definitions, showing that

positivesp1 :: ´2 :: 3 :: nilq “ 1 :: 3 :: nil

c) Use structural induction to prove that

@L P List plenppositivespLqq ď lenpLqq

Task 4 – List Me, List Me, Now You Gotta Kiss Me [18 pts]

Let R,S P List. Use structural induction on L to prove that

@L P List pconcatpconcatpL,Rq, Sq “ concatpL, concatpR,Sqq

i.e., that concat is associative.

2

Task 5 – A Few of My Favorite Strings [12 pts]

For each of the following, write a recursive definition of the set of strings satisfying the given properties.
Briefly justify that your solution is correct.

a) Binary strings that start with 1 and have odd length.

b) Binary strings where every 1 is immediately followed by a 00.

c) Binary strings with an odd number of 1s.

Task 6 – Donny, You’re Out of Your Element1 [18 pts]

Let A and B be the following sets:

A :“ tn P Z : 3 | nu

B :“ tn P Z : p3 | nq _ p6 | nqu

Write an English proof that A “ B.

Do not use the Meta Theorem template. Instead, prove the necessary biconditional by proving each
implication independently.

Task 7 – Extra Credit: Stone By the Company He Keeps [0 pts]

Consider an infinite sequence of positions 1, 2, 3, . . . and suppose we have a stone at position 1 and
another stone at position 2. In each step, we choose one of the stones and move it according to the
following rule: Say we decide to move the stone at position i; if the other stone is not at any of the
positions i` 1, i` 2, . . . , 2i, then it goes to 2i, otherwise it goes to 2i` 1.

For example, in the first step, if we move the stone at position 1, it will go to 3 and if we move the
stone at position 2 it will go to 4. Note: no matter how we move the stones, they will never be at the
same position.

Use induction to prove that, for any given positive integer n, it is possible to move one of the stones
to position n. For example, if n “ 7 first we move the stone at position 1 to 3. Then, we move the
stone at position 2 to 5 Finally, we move the stone at position 3 to 7.

1No punny shtuff — Nihilist

3

