Problem Set 5

Due: Friday, May 3rd by 11:00pm
Instructions
Solutions submission. You must submit your solution via Gradescope. In particular:

- Submit a single PDF file containing your solutions to Task 1(b), 2(b), 3, 5, 6 (and optionally 7). Follow the prompt on Gradescope to link tasks to your pages.
- The instructions for submitting Task 1(a), 2(a), and 4 appear below those individual problems.

Task 1 - The Dude Divides
Let A and B be the following sets:

$$
\begin{aligned}
& A:=\{n \in \mathbb{Z}: 6 \mid n+4\} \\
& B:=\{n \in \mathbb{Z}: 2 \mid n-4\}
\end{aligned}
$$

Now, consider the following claim:

$$
A \subseteq B
$$

a) Write a formal proof that the claim holds.

In Cozy, you can replace " $x \in A$ " by " $6 \mid x+4$ " with "defof A " and the reverse with "undef A ". ${ }^{1}$ You can replace " $A \subseteq B$ " by " $\forall x(x \in A \rightarrow x \in B)$ " with "defof subset $\{\mathrm{A}\}\{\mathrm{B}\}$ " and the reverse with "undef subset $\{A\}\{B\}$ ". (Here, you must also say which sets you are comparing. Just saying "defof subset" wouldn't be enough information for Cozy.)

Submit and check your formal proof here:
http://cozy.cs.washington.edu
You must also include your solution (as a screenshot, typeset ${ }^{A T} T_{E X}$, or rewritten by hand) in the PDF you submit to Gradescope.
b) Translate your formal proof to an English proof.

Keep in mind that your proof will be read by a human, not a computer, so you should explain the algebra steps in more detail, whereas some of the predicate logic steps (e.g., Elim \exists) can be skipped.

[^0]Let A and B be sets. Now, consider the following claim:

$$
(A \backslash B) \backslash C \cup(B \cap C) \subseteq A \cup B
$$

a) Write a formal proof that the claim holds.

In Cozy, you can replace " $x \in A \cup B$ " by " $x \in A \vee x \in B$ " with "defof $\operatorname{cup}\{\mathrm{A}\}\{\mathrm{B}\}$ " and the reverse with "undef cup $\{\mathrm{A}\}\{\mathrm{B}\}$ ". Likewise, the commands for $x \in A \cap B, x \in A \backslash B$, and $x \in A^{C}$ would be "defof cap $\{A\}\{B\}$ ", "defof $\backslash\{A\}\{B\}$ ", and "defof $\sim\{A\}$ ", respectively.

Hint: After unrolling the definitions, the fact you know should be a " \vee " (from unrolling " \cup "). It may be easiest to prove the required conclusion holds by cases using that " \vee ".

> Submit and check your formal proof here: $$
\text { http://cozy.cs.washington.edu }
$$

You must also include your solution (as a screenshot, typeset $\operatorname{AT}_{\mathrm{E}} \mathrm{X}$, or rewritten by hand) in the PDF you submit to Gradescope.
b) Translate your formal proof to an English proof.

Follow the same rules as in Task 1.

Task 3 - Parmesian, Romano, and Meta
Let A, B, and C be sets. For each of the following claims, write an English proof that the claim holds by following the Meta Theorem template given in lecture.

Note: In your equivalence chain, you can skip steps showing commutativity or associativity, as long as each step is easy to follow.
a) $(A \backslash B) \cup \bar{C}=(A \cup \bar{C}) \backslash(B \cap C)$
b) $B \backslash(A \backslash(C \cup B))=(A \cup \bar{A}) \backslash \bar{B}$

Let the domain of discourse be sets of integers, and let A, B, and C be some sets.
Write a formal proof that $\mathcal{P}(A) \cap \mathcal{P}(C) \subseteq \mathcal{P}(B \cap C)$ follows from $A \subseteq B$.
Your proof will need the definition of \mathcal{P} in addition to the other set operations. In Cozy, you can replace " $x \in \mathcal{P}(A)$ " by its definition, " $x \subseteq A$ ", with "defof PowerSet" and the reverse with "undef". In Cozy's syntax, you write $x \in \mathcal{P}(A)$ as "x in power(A)".

Submit and check your formal proof here:
http://cozy.cs.washington.edu
You can make as many attempts as needed to find a correct answer.

Task 5 - Alien Induction
[20 pts]
Prove, by induction, that

$$
\sum_{i=0}^{n}(3 i+1)=\frac{3 n^{2}+5 n+2}{2}
$$

holds for all $n \in \mathbb{N}$.
Write an English proof, following the template given in lecture.

Task 6 - Super-Colliding Super Inductor
Prove, by induction, that $2 n^{3}+n$ is divisible by 3 for any $n \in \mathbb{N}$.
Write an English proof, following the template given in lecture.

In this problem, you will show that given n red points and n blue points in the plane such that no three points lie on a common line, it is possible to draw line segments between red-blue pairs so that all the pairs are matched and none of the line segments intersect. Assume that there are n red and n blue points fixed in the plane.

A matching M is a collection of n line segments connecting distinct red-blue pairs. The total length of a matching M is the sum of the lengths of the line segments in M. Say that a matching M is minimal if there is no matching with a smaller total length.

Let IsMinimal (M) be the predicate that is true precisely when M is a minimal matching. Let HasCrossing (M) be the predicate that is true precisely when there are two line segments in M that cross each other.

Give an argument in English explaining why there must be at least one matching M so that IsMinimal (M) is true, i.e.

$$
\exists M \operatorname{lsMinimal}(M))
$$

Give an argument in English explaining why

$$
\forall M(\text { HasCrossing }(M) \rightarrow \neg \operatorname{IsMinimal}(M))
$$

Then, use the two results above to give a proof of the statement:

$$
\exists M \neg \text { HasCrossing }(M) .
$$

[^0]: ${ }^{1}$ Those commands should work as stated when reasoning backward. For forward reasoning, you need to add the line number at the end, e.g., defof A 1.1.1.

