
CSE 311: Foundations of Computing I Spring 2024

Problem Set 4
Due: Friday, April 26th by 11:00pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

– Submit a single PDF file containing your solutions to Task 1, 3, 5, & 6 (and optionally 7). Follow
the prompt on Gradescope to link tasks to your pages.

– The instructions for separately submitting Task 1(a), 2, 3(a), and 4 appear below those parts.

Task 1 – Even So Soon? [16 pts]

For any predicate for which we have a definition, we have rules that allow us to replace the predicate
with its definition or vice versa. As an example, consider “Even”, defined by Evenpxq :“ Dy px “ 2 ¨ yqq.
We can use this definition via these two rules:

Def of Even

Evenpxq

6 Dy px “ 2 ¨ yq

Undef Even

Dy px “ 2 ¨ yq

6 Evenpxq

For example, if we know Evenp6q holds, then “Def of Even” allows us to infer Dy p6 “ 2 ¨ yq. On the
other hand, if we know that Dy p10 “ 2 ¨ yq, then “Undef Even” allows us to infer Evenp10q.

In English proofs, we do not distinguish between replacing Evenpxq by its definition and vice versa
(both are “by the definition of Even”), but in Cozy, you need to say which direction you are doing by
using defof Even or undef Even.

We will also need to use Cozy’s algebra rule, which lets you infer equations implied by others:

Algebra

x1 “ y1 . . . xn “ yn
6 x “ y (if implied)

For example, if you know that 2x “ 3y ` 1 and y “ 2, then you can infer 2x “ 7 by algebra. Cozy
will not infer, from that, that x “ 7{2 because the latter is not an integer. More generally, Cozy will
only add equations and multiply both sides by constants. It will not do division.

To gain some familiarity with these rules, let’s do a proof. . .
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Let domain of discourse be the integers. Consider the following claim:

@x@y ppEvenpxq ^ Oddpyqq Ñ Oddp2x` 3yqq

In English, this says that, for any even integer x and odd integer y, the integer 2x` 3y is odd.

a) Write a formal proof that the claim holds.

Remember that Cozy (like Java) expects a “*” for multiplication. It will misunderstand if you
write 2a + 2 = 2(a+1). You have to write that as 2*a + 2 = 2*(a+1).

Submit and check your formal proof here:

http://cozy.cs.washington.edu

You must also include your solution (as a screenshot, typeset LATEX, or
rewritten by hand) in the PDF you submit to Gradescope.

b) Translate your formal proof to an English proof.

Keep in mind that your proof will be read by a human, not a computer, so you should explain the
algebra steps in more detail, whereas some of the predicate logic steps (e.g., Elim D) can be skipped.

Note that Cozy will provide an English translation of your formal proof, but this translation is
purposefully bad. It will give you something to start with, but as you will see, it is not well written.

Task 2 – Fiddler on the Proof [16 pts]

Let domain of discourse be the integers. Consider the following claim:

@a@b pppa ”12 7q ^ pb ”9 5qq Ñ pa´ b ”3 5qq

In English, this says that, for any integers a and b, if a is congruent to 7 modulo 12 and b is congruent
to 5 modulo 9, then a´ b is congruent to 5 modulo 3.

Write a formal proof that the claim holds.

Note that, while Cozy has special notation for the predicate ““”, it uses predicate notation for
everything else. In particular, a | b is written Dividespa, bq, and a ”m b is written Congruentpa, b,mq

Submit and check your formal proof here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.
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Task 3 – Weekend At Cape Mod [16 pts]

For any known theorem, we have rules that allow us to cite the fact that the theorem holds and, if the
statement of the theorem is a domain-restricted @, to apply it in one step to specific values.

As an example, suppose that “Thm1” says that @x pP pxq Ñ Qpxqq. We can use this theorem in a
formal proof via these two rules:

Cite Thm1

6 @x pP pxq Ñ Qpxqq

Apply Thm1

P p3q

6 Qp3q

The first rule simply writes down the known fact that Thm1 is true. If we know that P p3q holds, we
could then use “Elim @” to specialize it to x “ 3 and then Modus Ponens to establish that Qp3q holds.
However, the second rule allows us to do that in one step!

To gain some familiarity with these rules, let’s do a proof. . .

Let domain of discourse be the integers, and let n and c be nonzero integers. Consider this claim:

@a@b ppca ”cn cbq Ñ pa ”n bqq

In English, this says that, for any integers a and b, if ca is congruent to cb modulo cn, then a is
congruent to b modulo n.

a) Write a formal proof that the claim holds.

Some important notes:

– In Cozy, you will want to cite or apply the theorem DivideEqn, which says:

@a@b@c ppca “ cbq ^  pc “ 0qq Ñ pa “ bqq

– Note that this proposition has three @s in front! You can still use Cozy’s apply rule here. For
example, if you have proven that pz ¨ p2x ` 1q “ z ¨ py ´ 15qq ^  pz “ 0q on line 1.2.3, then
apply DivideEqn 1.2.3 {2*x+1, y-15, z} gives you 2x` 1 “ y ´ 15 on the next line.

– Cozy can only apply DivideEqn to an equation that looks exactly like cp. . . q “ cp. . . q. For
example, it cannot be applied to the equation c “ ca ` cb. Instead, you would first rewrite it
as c ¨ 1 “ cpa` bq using the algebra rule and then apply DivideEqn.

In particular, note that cab means pcaqb in Cozy because multiplication associates to the
left (as in Java), so you would need to explicitly transform cab “ cde to cpabq “ cpdeq using
algebra before you can divide by c.

Submit and check your formal proof here:

http://cozy.cs.washington.edu

You must also include your solution (as a screenshot, typeset LATEX, or
rewritten by hand) in the PDF you submit to Gradescope.

b) Translate your formal proof to an English proof.

Follow the same rules as in Task 1.
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Task 4 – A Good Prime Was Had By All [18 pts]

In addition to algebra, one thing we can do with equations is substitute one side for the other. Since
the two sides describe the exact same number, whatever facts hold for one side, hold for the other side.
That fact is formalized in the following rule:

Substitute

P pxq x “ y

6 P pyq

For example, if we know Primep2x ` 5q — i.e., that 2x ` 5 is a prime number — and we know that
x “ 2y ` 1, then we can substitute 2y ` 1 for x in the first fact to get Primep2p2y ` 1q ` 5q — i.e.,
that 2p2y ` 1q ` 5 is a prime number.

To gain some familiarity with these rules, let’s do some proofs. . .

Let domain of discourse be the positive integers. Write formal proofs of each of the following claims:

a) @a@b@m pp pa “ 1q ^ pm “ abqq Ñ  pb “ mqq

Hint: The implication inside the @s is equivalent to ppm “ abq ^ pb “ mqq Ñ pa “ 1q. You will
want to prove that implication instead and transform it using the Equivalent rule. (That implication
is easier to prove because no facts are negated!)

You will need to use the theorem called DividePosEqn:

@a@b@c ppca “ cbq Ñ pa “ bqq

Note that there is no need to require c ‰ 0 because 0 is not in the domain of discourse.

b) Given that Dn Dm ppp “ nmq ^ pn ‰ 1q ^ pm ‰ 1qq, it follows that  Primeppq.

Recall the definition of prime given in lecture:

Primeppq :“  pp “ 1q ^ @x ppx | pq Ñ px “ 1_ x “ pqq

By De Morgan, the negation of the right side is equivalent to

pp “ 1q _ Dx ppx | pq ^  px “ 1q ^  px “ pqq

Hint: To show that a number p is not prime, you need to either show that p “ 1 or that there
is some number x with x ‰ 1, x ‰ p, and x | p. You will want to show that the second of those
holds for some number x. Before you try to do this in Cozy, find a number mentioned in the Givens
that has these properties! (Once you show that such a number exists, you use Intro _ to build up
the expression above and then Equivalent to turn it into  Primeppq.)

You will need the fact you proved in part (a)! It is available to you under the name “Lemma2”.

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.
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Task 5 – A Wink and a Mod [12 pts]

For each of the problems below, calculate one solution to the modular equation using the Extended
Euclidean Algorithm. Then, state all solutions to the equation. Your decription should be of the form
“x “ C `Dk for any k P Z”, where C and D are integers with 0 ď C ă D.

Show your work for the first part by writing out the sequence of quotients and remainders, the
resulting tableau, and the sequence of substitutions needed to calculate the relevant multiplicative
inverse. Then, show how multiplying the initial equation on both sides by the multiplicative inverse
gives you a solution to the equation.

a) 16x ”45 4

b) 18x ”67 3

Note that both equations are in the form Ax ”n B for some constants A, B, and n. We will say that
such an equation is in “standard form”.

Task 6 – The Mod Couple [16 pts]

In this problem, we will solve the following modular equation, which is not in standard form:

5 ¨ p4x` 1q ”53 6x` 8

a) Show that any solution to the original equation is also a solution to 14x ”53 3, i.e., that we can
infer the fact that 14x ”53 3 holds from the fact that the original equation holds.

Write your solution as a formal proof, where each of your explanations is one of the following:

– “Given”: the original equation is assumed to hold

– “Algebra”: justifies a regular (non-modular) equation by ordinary algebra

– “To Modular”: transform a regular equation into a modular one

– “Add Equations”: add two modular equations

– “Transitivity”: infer a ”n g from a ”n b, b ”n c, . . . , f ”n g (with any number of equations)

Note that this proof could also be done in Cozy, with each of the steps above translated into an
apply of the appropriate theorem from lecture.

b) Find all solutions to 14x ”53 3. Format your answer as in Task 5.

c) Show that any solution to 14x ”53 3 is also a solution to the original equation.

Format your answer as a formal proof as in part (a).

d) Explain, in your own words, why we have proven that your solutions to (b) are also all the solutions
to the original modular equation.
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Task 7 – Extra Credit: Walk Like an Encryption [0 pts]

We know that we can reduce the base of an exponent modulo m : ak ”m pa mod mqk. But the same
is not true of the exponent! That is, we cannot write ak ”m ak mod m. This is easily seen to be false
in general. Consider, for instance, that 210 mod 3 “ 1 but 210 mod 3 mod 3 “ 21 mod 3 “ 2.

The correct law for the exponent is more subtle. We will prove it in steps....

(a) Let R “ tn P Z : 1 ď n ď m ´ 1 ^ gcdpn,mq “ 1u. Define the set aR “ tax mod m : x P Ru.
Prove that aR “ R for every integer a ą 0 with gcdpa,mq “ 1.

(b) Consider the product of all the elements in R modulo m and the elements in aR modulo m.
By comparing those two expressions, conclude that, for all a P R, we have aφpmq ”m 1, where
φpmq “ |R|.

(c) Use the last result to show that, for any b ě 0 and a P R, we have ab ”m ab mod φpmq.

(d) Finally, prove the following two facts about the function φ above. First, if p is prime, then φppq “
p ´ 1. Second, for any primes a and b with a ­“ b, we have φpabq “ φpaqφpbq. (Or slightly more
challenging: show this second claim for all positive integers a and b with gcdpa, bq “ 1.)

The second fact of part (d) implies that, if p and q are primes, then φppqq “ pp´ 1qpq´ 1q. That along
with part (c) prove the final claim from lecture about RSA, completing the proof of correctness of the
algorithm.
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