
CSE 311: Foundations of Computing I Spring 2024

Problem Set 3
Due: Wednesday, April 17th by 11:00pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

- Submit a single PDF file containing your solutions to tasks 2, 3, 6 (and optionally 7). Follow the
prompt on Gradescope to link tasks to your pages.

- The instructions for submitting tasks 1, 4, and 5 appear below those individual problems.

Task 1 – Cat on a Hot Tin Proof [20 pts]

For each of the following, complete a formal proof that the claim holds.

a) Given P ^Q, pQ^Rq Ñ V , and P Ñ pR^ Sq, it follows that V holds.

Your proof is only allowed to use the rules the Modus Ponens, Intro ^, Elim ^.

b) Given P ,  RÑ  P , and pQ_Rq Ñ pQ^ Sq. it follows that S holds.

Your proof is only allowed to use the rules the Modus Ponens, Intro ^, Elim ^, Intro _, Elim _,
and Equivalent. (Hint: One of the known equivalences will be useful!)

c) Given P Ñ pR^ Sq,  U Ñ S, and pR^ Uq Ñ V , it follows that P Ñ V .

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, Elim _, and Equivalent. (Hint: Direct Proof will be needed!)

d) Given P Ñ pQÑ Uq and QØ V , it follows that pP ^Qq Ñ pU ^ V q.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, Elim _, and Equivalent. (Hint: A different equivalence will be useful this time.)

e) Given P Ñ  R, pQ_Rq ^ pR_ Sq, and QÑ ppR_ Sq Ñ V q, it follows that P Ñ V .

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, Elim _. Note that Equivalent is not allowed this time. (Hint: Elim _ will be useful!)

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.
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Task 2 – Just Another Pretty Case [14 pts]

In lecture, we saw the following rules, which were described as alternatives to “Elim _”:

Cases

A_B AÑ C B Ñ C

6 C

Simple Cases

AÑ C  AÑ C

6 C

To gain some familiarity with the first rule, use it to write a formal proof of the following:

a) Given P ^ pR_ Sq, RÑ pP Ñ Qq, and S Ñ pP Ñ Qq, it follows that R_Q holds.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Cases (not Simple Cases or Elim _).

In the rest of this problem, we will show that Cases, Simple Cases, and Elim _ are equally powerful!
That is, any one of them allows you to prove the same things as the other two.

b) Using Cases, give a formal proof that the Simple Cases rule is valid. Specifically, prove that, given
AÑ C and  AÑ C, it follows that C holds.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Cases (not Simple Cases or Elim _), but you can also use Excluded Middle.1

Hint: Your proof can be very short. Mine has only 4 lines!

c) Using Simple Cases, give a formal proof that the Elim _ rule is valid. Specifically, prove that, given
A_B and  A, it follows that B holds.

Your proof is only allowed to use the rules Direct Proof, Intro ^, Elim ^, Intro _, and Simple
Cases (not Cases or Elim _), but you can also use the Law of Implication and Double Negation
equivalences. (Note that Modus Ponens is not allowed this time!)

d) Using Elim _, give a formal proof that the Cases rule is valid. Specifically, prove that, given A_B,
AÑ C, and B Ñ C, it follows that C holds.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Elim _ (not Cases or Simple Cases), but you can also use “simple cases” equivalence
you proved in Homework 2, Task 2 (d).

You can use Cozy to write and check your proof on this page (being careful to restrict the allowed rules).
However, note that you must still submit your proof in Gradescope

1Recall that this allows you to infer A_ A for any proposition A.

2

https://cozy.cs.washington.edu/test/proof.html


Task 3 – One False Prove [18 pts]

For each of the claims below, (1) translate the English proof into a formal proof and (2) say which of
the following categories describes the formal proof:

Proof The proof is correct.

Goof The claim is true but the proof is wrong.

Spoof The claim is false.

Finally, (3) if it is a goof, point out the errors in the proof and explain how to correct them, and if
it is a spoof, point out the first error in the proof and then show that the claim is false by giving a
counterexample. (If it is a correct proof, then skip part (3).)

Be careful! We want you to translate the English proof to a formal proof as closely as possible,
including translating the mistake(s), if any! Also, an incorrect proof does not necessarily mean the
claim is false, i.e., a goof is not a spoof!

Note that English proofs often skip steps that would be required in formal proofs. (That is fine as
long as it is easy for the reader to see what needs to be filled in.) Skipped steps do not mean that the
proof is incorrect. The proof is incorrect when it asserts a fact that is not necessarily true or does not
follow by the reason given.

Hint: To give a counterexample to a claim in propositional logic, describe what truth values each
atomic variable should have so that all the givens are true but the result is false.

a) Claim: Given  q _ s_ r and p_ s, it follows that pr ^ qq Ñ p holds.

Proof or Spoof : Assume r and q. The first given is equivalent to  pr ^ qq _  s. Since we know
that r and q are true, this tells us that  s must be true. The second given then tells us that p must
be true.

b) Claim: Given pÑ p q Ñ rq, s_ q, q Ñ  s, and  pÑ q, it follows that r holds.

Proof or Spoof : The second and third givens combined are equivalent to  q. The contrapositive
of the last given is p Ñ  q, which combined with  q gives us p. From these two, the first given
results in r.

c) Claim: Given sÑ pp^ qq,  sÑ r, and pr ^ pq Ñ q, it follows that q holds.

Proof or Spoof : First, note that s Ñ q holds, since, assuming s, from given s Ñ pp ^ qq we can
get p and also q. Second, note that  sÑ q holds, since, assuming  s, from given  sÑ r we can
get r, and we already saw that p holds, so together we have r^ p, from which q follows by the last
given. Finally, either s or  s is true, and q follows either from our first claim or second claim above,
respectively.
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Task 4 – Latin Down the Hatches [20 pts]

In this problem, we will try working without the Tautology or Equivalence rules (which are “expensive”).

For each of the following, write a formal proof that the claim holds.

Your proof is only allowed to use the most basic six rules of Propositional Logic (Modus Ponens,
Direct Proof, Intro ^, Elim ^, Intro _, and Elim _ or Cases) and the four Latin rules (Principium
Contradictionis, Reductio Ad Absurdum, Ex Falso Quodlibet, and Ad Litteram Verum).

a) Given A, it follows that   A holds. This is one direction of Double Negation.

b) Given AÑ B, it follows that  B Ñ  A. This is one direction of Contrapositive.

c) Given  A_B, it follows that AÑ B. This is one direction of Law of Implication.

d) Given  A^ B, it follows that  pA_Bq holds. This is one direction of De Morgan’s Law.

e) Given  A_ B, it follows that  pA^Bq holds. This is one direction of De Morgan’s Law.

Note that each of the inferences proven above is actually an equivalence. However, the other directions
cannot be proven without Tautology! Hence, a proof system without the “expensive” Tautology rule is
not able to prove all facts that are true in Propositional Logic.

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.
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Task 5 – Provin’ Right Along [20 pts]

For each of the following, write a formal proof that the claim holds.

Your proof is only allowed to use the most basic six rules of Propositional Logic (Modus Ponens,
Direct Proof, Intro ^, Elim ^, Intro _, and Elim _ or Cases) and the four rules for Predicate Logic
(Intro @, Elim @, Intro D, Elim D).

Let P pxq and Qpx, yq be predicates defined in some fixed domain of discourse, and let c be some
well-known constants in that domain.

a) Given DxP pxq, @xQpx, cq and @x pP pxq Ñ Qpc, xqq, it follows that Da Db pQpa, bq ^Qpb, aqq.

b) Given @xQpc, xq and @x@y pQpx, yq Ñ Qpy, xqq, it follows that @a Db pQpa, bq ^Qpb, aqq.

c) Given @a pP paq ^ DbQpb, aqq, it follows that @a Db pP paq ^Qpb, aqq.

The fact that we can move the D outside of the ^ was noted but not proven in lecture. In this
problem, you will show that you can prove it with our rules!

d) Given @a ppDbQpb, aqq Ñ P paqq, it follows that @a@b pQpb, aq Ñ P paqq.

Note that, this time, when we move the D outside of the “Ñ”, it turns into a @! This shows that
you cannot blindly move D (or @) around other operators and assume the meaning is unchanged.

Hints: The statement to be proved includes two @s and a “Ñ”. To prove those facts using
introduction rules will require subproofs nested three levels deep! (Note that you can Intro @ two
variables at once in Cozy, though, which would require only subproofs that are nested two levels.)

e) Given Da pP paq Ñ @bQpb, aqq, it follows that @b Da pP paq Ñ Qpb, aqq.

Note that the conclusion has the D and @ in the opposite order! As we discussed in lecture,
changing quantifier order does not usually preserve the meaning. Here, however, we are not claiming
that the given and conclusion are equivalent but rather that the given merely implies the conclusion.

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.

Important: Cozy uses a slightly different notation with quantifiers (@ and D). Rather than writing
“@xP pxq^Qpxq” like the slides, it writes “@x, P pxq^Qpxq” with an extra comma. And, while the slides
notation means “p@xP pxqq ^ Qpxq” (high precedence), Cozy’s notation means “@x, pP pxq ^ Qpxqq”
(low precedence). We will attempt to consistently use the comma to distinguish between notations.

(While it seems strange now, Cozy’s notation is actually the usual version in computer science. . . )
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Task 6 – Bust a Prove [18 pts]

For each of the claims below, (1) translate the English proof into a formal proof and (2) say which of
the following categories describes the formal proof:

Proof The proof is correct.

Goof The claim is true but the proof is wrong.

Spoof The claim is false.

Finally, (3) if it is a goof, point out the errors in the proof and explain how to correct them, and if
it is a spoof, point out the first error in the proof and then show that the claim is false by giving a
counterexample. (If it is a correct proof, then skip part (3).)

Be careful! We want you to translate the English proof to a formal proof as closely as possible,
including translating the mistake(s), if any! Also, an incorrect proof does not necessarily mean the
claim is false, i.e., a spoof is not a goof!

Note that English proofs often skip steps that would be required in formal proofs. (That is fine as
long as it is easy for the reader to see what needs to be filled in.) Skipped steps do not mean that the
proof is incorrect. The proof is incorrect when it asserts a fact that is not necessarily true or does not
follow by the reason given.

Hint: To give a counterexample to a claim in predicate logic, describe a domain of discourse and
definitions for all predicates such that all the givens are true but the result is false.

a) Claim: Given @y pQpyq Ñ @xRpx, yqq and @x pP pxq Ñ Dy Rpx, yqq, it must follow that @x
`

pP pxq^
Qpxqq Ñ Dz pRpz, xq ^Rpx, zqq

˘

.

Proof or Spoof : Let a be an arbitrary P that is also a Q. By the second given, since a is a P , there
exists b such that Rpa, bq. By the first given, since a is a Q, we also have Rpb, aq. Since a was
arbitrary, the claimed result follows.

b) For this part, assume the domain of discourse is the integers.

Claim: Given @x Dy Rpx, yq and @x@y pRpx, yq Ñ Rpy, xqq, it follows that DxRpx, xq.

Proof or Spoof : By the first given plugging in 7 for x, we get that there exists b such that Rp7, bq.
By the second given, since Rp7, bq, we can plug in 7 for both x and y, and we get Rp7, 7q. The
result follows.

c) Claim: Given @x@y pRpx, yq Ñ Rpy, xqq and @x@y @z ppRpx, yq ^ Rpy, zqq Ñ Rpx, zqq, it follows
that @x@y pRpx, yq Ñ Rpx, xqq.

Proof or Spoof : Let a and b be arbitrary and assume Rpa, bq. By the first given, we have Rpb, aq.
By the second given, plugging in b for x, a for y, and b for z, we get Rpb, bq. Since a and b were
arbitrary, the result follows.
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Task 7 – Extra Credit: Put That In Your Type and Smoke It [0 pts]

In this problem, we will extend the machinery we used in Homework 1’s extra credit problem in two ways.
First, we will add some new instructions. Second, and more importantly, we will add type information
to each instruction.

Rather than having a machine with single bit registers, we will imagine that each register can store
more complex values such as

Primitives These include values of types int, float, boolean, char, and String.

Pairs of values The type of a pair is denoted by writing “ˆ” between the types of the two parts. For
example, the pair p1, trueq has type “int ˆ boolean” since the first part is an int and the second
part is a boolean.

Functions The type of a function is denoted by writing a “Ñ” between the input and output types.
For example, a function that takes an int and returns a String is written “int Ñ String”.

We add type information, describing what is stored in each each register, in an additional column
next to the instructions. For example, if R1 contains a value of type int and R2 contains a value of type
int Ñ pString ˆ intq, i.e., a function that takes an int as input and returns a pair containing a String
and an int, then we could write the instruction

R3 :“ CALLpR1, R2q Stringˆ int

which calls the function stored in R2, passing in the value from R1 as input, and stores the result in R3,
and write a type of “Stringˆ int” in the right column since that is the type that is now stored in R3.

In addition to CALL, we add new instructions for working with pairs. If R1 stores a pair of type
Stringˆ int, then LEFTpR1q returns the String part and RIGHTpR1q returns the int part. If R2 contains
a char and R3 contains a boolean, then PAIRpR2, R3q returns a pair of containing a char and a boolean,
i.e., a value of type charˆ boolean.

a) Complete the following set of instructions so that they compute a value of type char in the last
register assigned (RN for some N):

R1 intˆ float

R2 int Ñ pStringˆ booleanq

R3 pfloatˆ Stringq Ñ char

R4 :“ . . . . . .

The first three lines show the types already stored in registers R1, R2, and R3 at the start, before
your instructions are executed. You are free to use the values in those registers in later instructions.

Store into a new register on each line. Do not reassign any registers.

b) Compare the types listed next to these instructions to the propositions listed on the lines of your
proof in Problem 1(a). Give a collection of text substitutions, such as replacing all instances of “P”
by “String” (these can include substitutions for atomic propositions and for operators), that will
make the sequence of propositions in Problem 1(a) exactly match the sequence of types in part (a).
(You may need to change your solution to part (a) slightly to make this work!)
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c) Now, let’s add another way to form new types. If A and B are types, then A` B will be the type
representing values that can be of either type A or type B. For example, String ` int would be a
type of values that can be strings or integers.

To work with this new type, we need some new instructions. First, if R1 has type A, then the
instruction CASEpR1q returns the same value but now having type A ` B. (Note that we can pick
any type B that we want here.) Second, if R2 stores a value of type A ` B, R3 stores a function
of type A Ñ C (a function taking an A as input and returning a value of type C), and R4 stores
a function of type B Ñ C, then the instruction SWITCHpR2, R3, R4q returns a value of type C: it
looks at the value in R2, and, if it is of type A, it calls the function in R3 and returns the result,
whereas, if it is of type B, it calls the function in R4 and returns the result. In either case, the result
is something of type C.

Complete the following set of instructions so that they compute a value of type float` boolean
in the last register assigned:

R1 intˆ pfloat` Stringq

R2 float Ñ pint Ñ booleanq

R3 String Ñ pint Ñ booleanq

R4 :“ . . . . . .

The first three lines again show the types of values already stored in registers R1, R2, and R3. As
before, do not reassign any registers. Use a new register for each instruction’s result.

d) Compare the types listed next to these instructions to the propositions listed on the lines of your
proof in Problem 2(a). Give a collection of text substitutions, such as replacing all instances of “P”
by “String” (these can include substitutions for atomic propositions and for operators), that will
make the sequence of propositions in Problem 2(a) exactly match the sequence of types in part (c).
(You may need to change your solution to part (c) slightly to make this work!)

e) Now that we see how to match up the propositions in our earlier proofs with types in the code above,
let’s look at the other two columns. Describe how to translate each of the rules of inference used in
the proofs from both Problem 1(a) and 2(a) so that they turn into the instructions in parts (a) and
(c).

f) One of the important rules not used in Problems 1(a) or 2(a) was Direct Proof. What new concept
would we need to introduce to our assembly language so that the similarities noted above apply
could also to proofs that use Direct Proof?
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