Formal Proofs on Congruences

Transitivity

Let a, b, and m be non-negative integers with $m \neq 0$.
Prove that, if $a \equiv_{m} b$ and $b \equiv_{m} c$, then $a \equiv_{m} c$.
Formal: Try it yourself here,
English: Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we have $a-b=s m$ and $b-c=t m$ for some integers s, t. Adding these two equations, we see that $a-c=(a-b)+(b-c)=$ $s m+t m=(s+t) m$. This shows that $a \equiv_{m} c$ by definition.

Congruence From Equation

Let a, b, and m be non-negative integers with $m \neq 0$.
Prove that, if $a=b$, then $a \equiv_{m} b$.
Formal: Try it yourself here
English: Suppose that $a=b$. This tells us that $a-b=0=0 \cdot m$, showing $a \equiv_{m} b$, by definition.

Adding Congruences

Let a, b, c, d, and m be non-negative integers with $m \neq 0$.
Prove that, if $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a+b \equiv_{m} c+d$.
Formal: Try it yourself here
English: Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we have $a-b=s m$ and $c-d=t m$ for some integers s and t. Adding these two equations, we see that $(a+c)-(b+d)=$ $(a-b)+(c-d)=s m+t m=(s+t) m$. This shows that $a+c \equiv_{m} b+d$ by definition.

Multiplying Congruences

Let a, b, c, d, and m be non-negative integers with $m \neq 0$.
Prove that, if $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a b \equiv_{m} c d$.
In doing this proof formally, we will need to apply a theorem for multiplying equations. It says

$$
\text { MultEqns: } \quad \forall a \forall b \forall c \forall d((a=b \wedge c=d) \rightarrow(a c=b d))
$$

Formal: Try it yourself here
English: Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we have $a-b=s m$ and $c-d=t m$ for some integers s and t. We can write these equivalently as $a=b+s m$ and $c=d+t m$. Multiplying these last two equations, we see that $a c=(b+s m)(d+t m)=b d+(b t+s d+s t m) m$. This last equation can be rewritten $a c-b d=(b t+s d+s t m) m$, which shows that $a c \equiv_{m} b d$.

Modular Arithmetic: A Property

Let a, b, and m be non-negative integers with $0<m$.
Prove that $a \equiv_{m} b$ iff $a \bmod m=b \bmod m$.
This proof is longer, so we will split it into parts. We will prove each implication separately:
Lemma 1.1: $\forall a \forall b \forall m(0<m \rightarrow \bmod (a, m)=\bmod (b, m) \rightarrow$ Congruent $(a, b, m))$
Lemma 1.2: $\forall a \forall b \forall m(0<m \rightarrow$ Congruent $(a, b, m) \rightarrow \bmod (a, m)=\bmod (b, m))$
With those in hand, we prove this as follows. (Try it yourself here.)

1. $0<m$
2. $\bmod (a, m)=\bmod (b, m) \rightarrow$ Congruent (a, b, m)
3. Congruent $(a, b, m) \rightarrow \bmod (a, m)=\bmod (b, m)$
4. $(\bmod (a, m)=\bmod (b, m) \rightarrow$ Congruent $(a, b, m)) \wedge$

Given
Apply Lemma1_1: 1
Apply Lemma1_2: 1
Intro $\wedge: 2,3$

Equivalent: 4
5. Congruent $(a, b, m) \leftrightarrow \bmod (a, m)=\bmod (b, m)$

Now, we can move on to proving the two lemmas we used above...

Lemma 1.1

Prove that $a \bmod m=b \bmod m$ implies $a \equiv_{m} b$.
Formal: Try it yourself here,
English: By the Division Theorem, we can write a and b in the form $a=\operatorname{div}(a, m) m+\bmod (a, m)$ and $b=\operatorname{div}(b, m) m+\bmod (b, m)$.

Now, suppose that $\bmod (a, m)=\bmod (b, m)$. Then, we can calculate

$$
\begin{aligned}
a-b & =(\operatorname{div}(a, m)-\operatorname{div}(b, m)) m+(\bmod (a, m)-\bmod (b, M)) \\
& =(\operatorname{div}(a, m)-\operatorname{div}(b, m)) m
\end{aligned}
$$

This shows that $m \mid a-b$, which means that $a \equiv_{m} b$, by definition.

Lemma 1.2

Prove that $a \equiv_{m} b$ implies $a \bmod m=b \bmod m$.
In doing so, we will use the uniqueness property of the remainder, which says

$$
\forall a \forall b \forall q \forall r(((a=q b+r) \wedge(0 \leq r) \wedge(r<b)) \rightarrow(q=\operatorname{div}(a, b) \wedge r=\bmod (a, b)))
$$

Formal: Try it yourself here,
English: By the Division Theorem, we can write a and b in the form $a=\operatorname{div}(a, m) m+\bmod (a, m)$ and $b=\operatorname{div}(b, m) m+\bmod (b, m)$.

Now, suppose that $a \equiv_{m} b$. Unrolling the definitions, this says that $b=a-k m$ for some integer k. Thus, we have

$$
\begin{aligned}
b & =\operatorname{div}(a, m) m+\bmod (a, m)-k m \\
& =(\operatorname{div}(a, m)-k) m+\bmod (a, m)
\end{aligned}
$$

Since $0 \leq \operatorname{div}(a, m)<m$, the Division Uniqueness Theorem says that $\bmod (a, m)=\bmod (b, m)$.

Useful GCD Fact

Let a and b be positive integers.
Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.
This proof is long, so we will split it into parts. We will prove each implication separately:
Lemma 2.1: $\forall a \forall b \forall d(((d \mid a) \wedge(d \mid b)) \rightarrow((d \mid b) \wedge(d \mid a \bmod b)))$
Lemma 2.2: $\forall a \forall b \forall d(((d \mid b) \wedge(d \mid a \bmod b)) \rightarrow((d \mid a) \wedge(d \mid b)))$
Lemma 3: $\forall a \forall b \forall c \forall d(\forall x((x \mid a) \wedge(x \mid b)) \rightarrow((x \mid c) \wedge(x \mid d)) \rightarrow(\operatorname{gcd}(a, b) \leq \operatorname{gcd}(c, d)))$
Lemma 4: $\forall a \forall b(((a \leq b) \wedge(b \leq a)) \rightarrow(a=b))$
With those in hand, we prove this as follows.
Formal: Try it yourself here,
English: Applying Lemma 3 to $a, b, b, a \bmod b$, its premise becomes Lemma 2.1, so we conclude that $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(b, a \bmod b)$. Applying Lemma 3 to $b, a \bmod b, a, b$, its premise becomes Lemma 2.2, so we conclude that $\operatorname{gcd}(b, a \bmod b) \leq \operatorname{gcd}(a, b)$. Thus, by Lemma 4 , we get $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.

Lemma 2.1

Prove that $(d \mid b)$ and $(d \mid a \bmod b)$ follow from $d \mid a$ and $d \mid b$.
Formal: Try it yourself here. (Note: you will need substitute as well as algebra.)
English: Since $d \mid a$, we know that $a=s d$, for some integer s, by the definition of divides. Likewise, since $d \mid b$, we know that $b=t d$, for some integer t, by the definition of divides.

By the Division Theorem, we can write $a=q b+\bmod (a, b)$. Solving for $\bmod (a, b)$, we have $\bmod (a, b)=a-q b$. Substituting in the prior facts about a and b and pulling out a common factor of d, we have $\bmod (a, b)=(s-q t) d$. This shows that $d \mid \bmod (a, b)$ by the definition of divides.

Lemma 2.2

Prove that $(d \mid a)$ and $(d \mid b)$ follow from $d \mid b$ and $d \mid a \bmod b$.
Formal: Try it yourself here, (Note: you will need substitute as well as algebra.)
English: Since $d \mid b$, we know that $b=s d$, for some integer s, by the definition of divides. Likewise, since $d \mid a \bmod b$, we know that $a \bmod b=t d$, for some integer t.

By the Division Theorem, we can write $a=q b+\bmod (a, b)$. Substituting in the prior facts above and pulling out a common factor of d, we have $a=(q s+t) d$. This shows that $d \mid a$ by definition.

Lemma 3

Let a, b, c, and d be positive integers.
Prove that $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(c, d)$ follows from $\forall x(((x \mid a) \wedge(x \mid b)) \rightarrow((x \mid c) \wedge(x \mid d)))$.
In order to do so, we will need the following two facts about GCD (the first is its definition):
GCD Pos: $\forall a \forall b(T \rightarrow(((\operatorname{gcd}(a, b) \mid a) \wedge(\operatorname{gcd}(a, b) \mid b)) \wedge \forall d(((d \mid a) \wedge d \mid b)) \rightarrow(d \mid \operatorname{gcd}(a, b))))$ GCD Unique: $\forall a \forall b \forall x(((x \mid a) \wedge(x \mid b) \wedge \forall d(((d \mid a) \wedge(d \mid b)) \rightarrow(d \leq x))) \rightarrow(x=\operatorname{gcd}(a, b)))$

The first fact has a (trivial) premise in order to make it easier to use with apply.
Formal: Try it yourself here,
English: By GCD Pos, we know that $\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b) \mid b$. We are given that anything that divides a and b also divides c and d. Applying that to $\operatorname{gcd}(a, b)$, we get that $\operatorname{gcd}(a, b) \mid c$ and $\operatorname{gcd}(a, b) \mid d$. By GCD Pos, any positive integer with the latter two properties is no bigger than $\operatorname{gcd}(c, d)$. Applying that to $\operatorname{gcd}(a, b)$, we get that $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(c, d)$.

Lemma 4

Let a and b be positive integers.
Prove that $a=b$ follows from $a \leq b$ and $b \leq a$.
In order to do so, we will need the following facts about " \leq " and " $<$ ":

$$
\begin{aligned}
& \text { LessOrEqual: } \forall a \forall b((a \leq b) \rightarrow((a=b) \vee(a<b))) \\
& \text { LessVsGreater: } \forall a \forall b((a<b) \rightarrow \neg(b<a))
\end{aligned}
$$

The first fact is the definition of " \leq ". The says that " $<$ " is anti-symmetric.
Formal: Try it yourself here. (Hint: Prove it by cases over $a<b$ and $\neg(a<b)$.)
English: We will prove this by cases over whether $a<b$ or $\neg(a<b)$.
Suppose that $\neg(a<b)$. Since $a \leq b$, we must have $a=b$, by the definition of " \leq ".
Now, suppose that $a<b$. This means that $\neg(b<a)$ by the anti-symmetry of " $<$ ". Since $b \leq a$, we must have $b=a$, by the definition of ' \leq ", which can be rewritten $a=b$.

