Formal Proofs on Congruences

Transitivity

Let a, b, and m be non-negative integers with $m \neq 0$. Prove that, if $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Formal: Try it yourself here.

English: Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we have a - b = sm and b - c = tm for some integers s, t. Adding these two equations, we see that a - c = (a - b) + (b - c) = sm + tm = (s + t)m. This shows that $a \equiv_m c$ by definition.

Congruence From Equation

Let a, b, and m be non-negative integers with $m \neq 0$. Prove that, if a = b, then $a \equiv_m b$.

Formal: Try it yourself here.

English: Suppose that a = b. This tells us that $a - b = 0 = 0 \cdot m$, showing $a \equiv_m b$, by definition.

Adding Congruences

Let a, b, c, d, and m be non-negative integers with $m \neq 0$. Prove that, if $a \equiv_m b$ and $c \equiv_m d$, then $a + b \equiv_m c + d$.

Formal: Try it yourself here.

English: Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we have a - b = sm and c - d = tm for some integers s and t. Adding these two equations, we see that (a + c) - (b + d) = (a - b) + (c - d) = sm + tm = (s + t)m. This shows that $a + c \equiv_m b + d$ by definition.

Multiplying Congruences

Let a, b, c, d, and m be non-negative integers with $m \neq 0$. Prove that, if $a \equiv_m b$ and $c \equiv_m d$, then $ab \equiv_m cd$.

In doing this proof formally, we will need to apply a theorem for multiplying equations. It says

MultEqns:
$$\forall a \, \forall b \, \forall c \, \forall d \, ((a = b \land c = d) \rightarrow (ac = bd))$$

Formal: Try it yourself here.

English: Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we have a - b = sm and c - d = tm for some integers s and t. We can write these equivalently as a = b + sm and c = d + tm. Multiplying these last two equations, we see that ac = (b + sm)(d + tm) = bd + (bt + sd + stm)m. This last equation can be rewritten ac - bd = (bt + sd + stm)m, which shows that $ac \equiv_m bd$.

Modular Arithmetic: A Property

Let a, b, and m be non-negative integers with 0 < m. Prove that $a \equiv_m b$ iff $a \mod m = b \mod m$.

This proof is longer, so we will split it into parts. We will prove each implication separately:

Lemma 1.1:
$$\forall a \, \forall b \, \forall m \, (0 < m \to \mathsf{mod}(a, m) = \mathsf{mod}(b, m) \to \mathsf{Congruent}(a, b, m))$$

Lemma 1.2: $\forall a \, \forall b \, \forall m \, (0 < m \to \mathsf{Congruent}(a, b, m) \to \mathsf{mod}(a, m) = \mathsf{mod}(b, m))$

With those in hand, we prove this as follows. (Try it yourself here.)

1.	0 < m	Given
2.	$mod(a,m) = mod(b,m) \to Congruent(a,b,m)$	Apply Lemma1_1: 1
3.	$Congruent(a,b,m) \to mod(a,m) = mod(b,m)$	Apply Lemma1_2: 1
4.	$(mod(a,m) = mod(b,m) \to Congruent(a,b,m)) \ \land \\$	Intro \wedge : 2, 3
	$(Congruent(a,b,m) \to mod(a,m) = mod(b,m))$	
5.	$Congruent(a,b,m) \leftrightarrow mod(a,m) = mod(b,m)$	Equivalent: 4

Now, we can move on to proving the two lemmas we used above...

Lemma 1.1

Prove that $a \mod m = b \mod m$ implies $a \equiv_m b$.

Formal: Try it yourself here.

English: By the Division Theorem, we can write a and b in the form a = div(a, m)m + mod(a, m) and b = div(b, m)m + mod(b, m).

Now, suppose that mod(a, m) = mod(b, m). Then, we can calculate

$$\begin{aligned} a-b &= \left(\mathsf{div}(a,m) - \mathsf{div}(b,m)\right)m + \left(\mathsf{mod}(a,m) - \mathsf{mod}(b,M)\right) \\ &= \left(\mathsf{div}(a,m) - \mathsf{div}(b,m)\right)m \end{aligned}$$

This shows that $m \mid a - b$, which means that $a \equiv_m b$, by definition.

Lemma 1.2

Prove that $a \equiv_m b$ implies $a \mod m = b \mod m$.

In doing so, we will use the uniqueness property of the remainder, which says

$$\forall a \, \forall b \, \forall q \, \forall r \, (((a = qb + r) \wedge (0 \leq r) \wedge (r < b)) \rightarrow (q = \mathsf{div}(a, b) \wedge r = \mathsf{mod}(a, b)))$$

Formal: Try it yourself here.

English: By the Division Theorem, we can write a and b in the form a = div(a, m)m + mod(a, m) and b = div(b, m)m + mod(b, m).

Now, suppose that $a \equiv_m b$. Unrolling the definitions, this says that b = a - km for some integer k. Thus, we have

$$b = \operatorname{div}(a, m) m + \operatorname{mod}(a, m) - km$$
$$= (\operatorname{div}(a, m) - k) m + \operatorname{mod}(a, m)$$

Since $0 \le \text{div}(a, m) < m$, the Division Uniqueness Theorem says that mod(a, m) = mod(b, m).

Useful GCD Fact

Let a and b be positive integers. Prove that $gcd(a, b) = gcd(b, a \mod b)$.

This proof is long, so we will split it into parts. We will prove each implication separately:

```
 \begin{array}{ll} \text{Lemma 2.1:} & \forall a \, \forall b \, \forall d \, (((d \mid a) \wedge (d \mid b)) \rightarrow ((d \mid b) \wedge (d \mid a \bmod b))) \\ \text{Lemma 2.2:} & \forall a \, \forall b \, \forall d \, (((d \mid b) \wedge (d \mid a \bmod b)) \rightarrow ((d \mid a) \wedge (d \mid b))) \\ \text{Lemma 3:} & \forall a \, \forall b \, \forall c \, \forall d \, (\forall x \, ((x \mid a) \wedge (x \mid b)) \rightarrow ((x \mid c) \wedge (x \mid d)) \rightarrow (\gcd(a,b) \leq \gcd(c,d))) \\ \text{Lemma 4:} & \forall a \, \forall b \, (((a \leq b) \wedge (b \leq a)) \rightarrow (a = b)) \\ \end{array}
```

With those in hand, we prove this as follows.

Formal: Try it yourself here.

English: Applying Lemma 3 to a, b, b, $a \mod b$, its premise becomes Lemma 2.1, so we conclude that $gcd(a,b) \leq gcd(b,a \mod b)$. Applying Lemma 3 to b, $a \mod b$, a, b, its premise becomes Lemma 2.2, so we conclude that $gcd(b,a \mod b) \leq gcd(a,b)$. Thus, by Lemma 4, we get $gcd(a,b) = gcd(b,a \mod b)$.

Lemma 2.1

Prove that $(d \mid b)$ and $(d \mid a \mod b)$ follow from $d \mid a$ and $d \mid b$.

Formal: Try it yourself here. (Note: you will need substitute as well as algebra.)

English: Since $d \mid a$, we know that a = sd, for some integer s, by the definition of divides. Likewise, since $d \mid b$, we know that b = td, for some integer t, by the definition of divides.

By the Division Theorem, we can write $a = qb + \mathsf{mod}(a, b)$. Solving for $\mathsf{mod}(a, b)$, we have $\mathsf{mod}(a, b) = a - qb$. Substituting in the prior facts about a and b and pulling out a common factor of d, we have $\mathsf{mod}(a, b) = (s - qt)d$. This shows that $d \mid \mathsf{mod}(a, b)$ by the definition of divides.

Lemma 2.2

Prove that $(d \mid a)$ and $(d \mid b)$ follow from $d \mid b$ and $d \mid a \mod b$.

Formal: Try it yourself here. (Note: you will need substitute as well as algebra.)

English: Since $d \mid b$, we know that b = sd, for some integer s, by the definition of divides. Likewise, since $d \mid a \mod b$, we know that $a \mod b = td$, for some integer t.

By the Division Theorem, we can write a = qb + mod(a, b). Substituting in the prior facts above and pulling out a common factor of d, we have a = (qs + t)d. This shows that $d \mid a$ by definition.

Lemma 3

Let a, b, c, and d be positive integers.

Prove that $gcd(a, b) \mid gcd(c, d)$ follows from $\forall x (((x \mid a) \land (x \mid b)) \rightarrow ((x \mid c) \land (x \mid d))).$

In order to do so, we will need the following two facts about GCD (the first is its definition):

GCD Pos:
$$\forall a \, \forall b \, (\top \rightarrow (((\gcd(a,b) \mid a) \land (\gcd(a,b) \mid b)) \land \forall d \, (((d \mid a) \land d \mid b)) \rightarrow (d \mid \gcd(a,b))))$$

GCD Unique: $\forall a \, \forall b \, \forall x \, (((x \mid a) \land (x \mid b) \land \forall d \, (((d \mid a) \land (d \mid b)) \rightarrow (d \leq x))) \rightarrow (x = \gcd(a,b)))$

The first fact has a (trivial) premise in order to make it easier to use with apply.

Formal: Try it yourself here.

English: By GCD Pos, we know that $gcd(a, b) \mid a$ and $gcd(a, b) \mid b$. We are given that anything that divides a and b also divides c and d. Applying that to gcd(a, b), we get that $gcd(a, b) \mid c$ and $gcd(a, b) \mid d$. By GCD Pos, any positive integer with the latter two properties is no bigger than gcd(c, d). Applying that to gcd(a, b), we get that $gcd(a, b) \leq gcd(c, d)$.

Lemma 4

Let a and b be positive integers.

Prove that a = b follows from $a \le b$ and $b \le a$.

In order to do so, we will need the following facts about "\le " and "\le ":

LessOrEqual:
$$\forall a \, \forall b \, ((a \leq b) \rightarrow ((a = b) \vee (a < b)))$$

LessVsGreater: $\forall a \, \forall b \, ((a < b) \rightarrow \neg (b < a))$

The first fact is the definition of "\le ". The says that "<" is anti-symmetric.

Formal: Try it yourself here. (Hint: Prove it by cases over a < b and $\neg (a < b)$.)

English: We will prove this by cases over whether a < b or $\neg (a < b)$.

Suppose that $\neg(a < b)$. Since $a \le b$, we must have a = b, by the definition of " \le ".

Now, suppose that a < b. This means that $\neg (b < a)$ by the anti-symmetry of "<". Since $b \le a$, we must have b = a, by the definition of ' \le ", which can be rewritten a = b.