Formal Proofs on Congruences

Transitivity

Let a, b, and m be non-negative integers with m # 0.

Prove that, if a =,, b and b =, ¢, then a =, c.
Formal: Try it yourself herel

English: Suppose that a =,, b and ¢ =,,, d. Unrolling the definitions, we have a — b = sm and
b—c = tm for some integers s, t. Adding these two equations, we see that a—c = (a—b)+(b—c¢) =
sm + tm = (s + t)m. This shows that a =, ¢ by definition.

Congruence From Equation
Let a, b, and m be non-negative integers with m # 0.
Prove that, if a = b, then a =, b.

Formal: Try it yourself herel

English: Suppose that a = b. This tells us that a—b = 0 = 0-m, showing a =,,, b, by definition.

Adding Congruences

Let a, b, ¢, d, and m be non-negative integers with m # 0.

Prove that, if a =,, b and ¢ =, d, then a + b =,,, ¢ + d.
Formal: Try it yourself herel

English: Suppose that a =, b and ¢ =,,, d. Unrolling the definitions, we have a — b = sm and
¢ —d = tm for some integers s and t. Adding these two equations, we see that (a +¢) — (b+d) =
(a—0b)+ (c—d) = sm+tm = (s+ t)m. This shows that a + ¢ =, b + d by definition.

Multiplying Congruences
Let a, b, ¢, d, and m be non-negative integers with m # 0.
Prove that, if a =, b and ¢ =, d, then ab =, cd.

In doing this proof formally, we will need to apply a theorem for multiplying equations. It says

MultEqns: VaVbVeVd ((a =bAc=d) — (ac = bd))

Formal: Try it yourself herel

English: Suppose that a =, b and ¢ =,,, d. Unrolling the definitions, we have a — b = sm and
c—d = tm for some integers s and t. We can write these equivalently as a = b+ sm and ¢ = d+tm.
Multiplying these last two equations, we see that ac = (b+ sm)(d + tm) = bd + (bt + sd + stm)m.
This last equation can be rewritten ac — bd = (bt + sd + stm)m, which shows that ac =, bd.
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Modular Arithmetic: A Property

Let a, b, and m be non-negative integers with 0 < m.
Prove that a =, b iff @ mod m = b mod m.

This proof is longer, so we will split it into parts. We will prove each implication separately:

Lemma 1.1: VaVb¥m (0 < m — mod(a, m) = mod(b, m) — Congruent(a, b, m))
Lemma 1.2: VaVbVm (0 < m — Congruent(a, b, m) — mod(a, m) = mod(b, m))

With those in hand, we prove this as follows. (Try it yourself here.)

1. 0<m Given

2. mod(a,m) = mod(b, m) — Congruent(a, b, m) Apply Lemmal_1: 1

3. Congruent(a,b,m) — mod(a, m) = mod(b, m) Apply Lemmal_2: 1

4. (mod(a,m) = mod(b,m) — Congruent(a,b,m)) A Intro A: 2, 3
(Congruent(a, b,m) — mod(a, m) = mod(b, m))

5. Congruent(a, b, m) <> mod(a, m) = mod(b, m) Equivalent: 4

Now, we can move on to proving the two lemmas we used above. ..

Lemma 1.1

Prove that @ mod m = b mod m implies a =, b.
Formal: Try it yourself herel

English: By the Division Theorem, we can write a and b in the form a = div(a, m)m+mod(a, m)
and b = div(b, m)m + mod(b, m).
Now, suppose that mod(a, m) = mod(b,m). Then, we can calculate

a — b= (div(a,m) — div(b,m)) m + (mod(a, m) — mod(b, M))
= (div(a, m) — div(b,m)) m

This shows that m | a — b, which means that a =, b, by definition.

Lemma 1.2

Prove that a =, b implies ¢ mod m = b mod m.

In doing so, we will use the uniqueness property of the remainder, which says

Va¥oVqVr (((a =qgb+71) A (0 <7)A(r <b)) — (¢ =div(a,b) Ar = mod(a,b)))

Formal: Try it yourself herel
English: By the Division Theorem, we can write a and b in the form a = div(a, m)m+mod(a, m)
and b = div(b, m)m + mod(b, m).
Now, suppose that a =, b. Unrolling the definitions, this says that b = a — km for some integer
k. Thus, we have
b = div(a, m) m + mod(a, m) — km
= (div(a,m) — k) m + mod(a, m)

Since 0 < div(a, m) < m, the Division Uniqueness Theorem says that mod(a,m) = mod(b, m).
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Useful GCD Fact

Let a and b be positive integers.
Prove that ged(a, b) = ged(b, @ mod b).

This proof is long, so we will split it into parts. We will prove each implication separately:

Lemma 2.1: YaVb¥d (((d|a) A(d|b)) = ((d]b) A (d] amod b)))

Lemma 2.2: YaVb¥d (((d|b) A(d|amodb)) — ((d|a)A(d]|b)))
Lemma 3: VaVbVeVd (Vz ((x | a) A (z | b)) = ((z | c) A(z | d)) = (ged(a,b) < ged(e, d)))
Lemma 4: VaVb(((a <b)A(b<a)) — (a=10))

A
A

With those in hand, we prove this as follows.
Formal: Try it yourself herel

English: Applying Lemma 3 to a, b, b, a mod b, its premise becomes Lemma 2.1, so we
conclude that ged(a,b) < ged(b,a mod b). Applying Lemma 3 to b, a mod b, a, b, its premise
becomes Lemma 2.2, so we conclude that ged(b, a mod b) < ged(a,b). Thus, by Lemma 4, we get
ged(a, b) = ged(b, @ mod b).

Lemma 2.1
Prove that (d | b) and (d | a mod b) follow from d | a and d | b.
Formal: Try it yourself here. (Note: you will need substitute as well as algebra.)

English: Since d | a, we know that a = sd, for some integer s, by the definition of divides.
Likewise, since d | b, we know that b = td, for some integer t, by the definition of divides.

By the Division Theorem, we can write a = ¢b + mod(a,b). Solving for mod(a,b), we have
mod(a, b) = a — ¢gb. Substituting in the prior facts about a and b and pulling out a common factor
of d, we have mod(a,b) = (s — qt)d. This shows that d | mod(a,b) by the definition of divides.

Lemma 2.2

Prove that (d | a) and (d | b) follow from d | b and d | a mod b.
Formal: Try it yourself here. (Note: you will need substitute as well as algebra.)

English: Since d | b, we know that b = sd, for some integer s, by the definition of divides.
Likewise, since d | a mod b, we know that a mod b = td, for some integer ¢.

By the Division Theorem, we can write a = gb+mod(a, b). Substituting in the prior facts above
and pulling out a common factor of d, we have a = (¢s 4 t)d. This shows that d | a by definition.
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Lemma 3

Let a, b, ¢, and d be positive integers.
Prove that ged(a,b) | ged(c, d) follows from Vz (((x | a) A (z | b)) = ((z | ¢) A (x| d))).

In order to do so, we will need the following two facts about GCD (the first is its definition):

GCD Pos: Va¥b(T — (((ged(a,b) | a) A (ged(a,b) | b)) AVA(((d | a) Ad | b)) — (d] ged(a,b))))
GCD Unique: VaVbVz (((x | a) A (z|b) AVd(((d]a)A(d]b)) = (d<x))) = (x =ged(a,b)))
The first fact has a (trivial) premise in order to make it easier to use with apply.

Formal: Try it yourself here.

English: By GCD Pos, we know that ged(a,b) | a and ged(a,b) | b. We are given that anything
that divides a and b also divides ¢ and d. Applying that to ged(a,b), we get that ged(a,b) | ¢ and
ged(a,b) | d. By GCD Pos, any positive integer with the latter two properties is no bigger than
ged(e, d). Applying that to ged(a,b), we get that ged(a,b) < ged(c, d).

Lemma 4

Let a and b be positive integers.
Prove that a = b follows from a < b and b < a.

In order to do so, we will need the following facts about “<” and “<”:
LessOrEqual: VaVb((a <b) = ((a=10)V (a <)))
LessVsGreater: VaVb((a < b) — —(b < a))
The first fact is the definition of “<”. The says that “<” is anti-symmetric.
Formal: Try it yourself here. (Hint: Prove it by cases over a < b and —(a < b).)
English: We will prove this by cases over whether a < b or —(a < b).
Suppose that =(a < b). Since a < b, we must have a = b, by the definition of “<”.

Now, suppose that a < b. This means that =(b < a) by the anti-symmetry of “<”. Since b < a,
we must have b = a, by the definition of ‘<”, which can be rewritten a = b.
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