Formal Proofs on Congruences

Transitivity

Let a, b, and m be non-negative integers with $m \neq 0$. Prove that, if $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

	1.1.	$Congruent(a,b,m) \land Congruent(b,c,m)$	Assumption
	1.2.	Congruent(a,b,m)	Elim \wedge : 1.1
	1.3.	Congruent(b,c,m)	Elim \wedge : 1.1
	1.4.	Divides(m, a-b)	Def of Congruent: 1.2
	1.5.	Divides(m, b-c)	Def of Congruent: 1.3
	1.6.	$\exists k, a-b = k m$	Def of Divides: 1.4
	1.7.	$\exists k, b-c = k m$	Def of Divides: 1.5
	1.8.	a - b = s m	Elim $\exists: 1.6$
	1.9.	b-c=t m	Elim $\exists: 1.7$
	1.10.	a - c = (s + t) m	Algebra: 1.8 1.9
	1.11.	$\exists k, a-c = k m$	Intro $\exists: 1.10$
	1.12.	Divides(m, a-c)	Undef Divides: 1.11
	1.13.	Congruent(a,c,m)	Undef Congruent: 1.12
1.	1. $Congruent(a, b, m) \land Congruent(b, c, m) \to Congruent(a, c, m)$ Direct Proof		Direct Proof

English: Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we have a-b = sm and b-c = tm for some integers s, t. Adding these two equations, we see that a-c = (a-b)+(b-c) = sm+tm = (s+t)m. This shows that $a \equiv_m c$ by definition.

Congruence From Equation

Let a, b, and m be non-negative integers with $m \neq 0$. Prove that, if a = b, then $a \equiv_m b$.

	1.1.	a = b	Assumption
	1.2.	a-b=0 m	Algebra: 1.1
	1.3.	$\exists k, a-b = k m$	Intro $\exists: 1.2$
	1.4.	Divides(m, a - b)	Undef Divides: 1.3
	1.5.	Congruent(a,b,m)	Undef Congruent: 1.4
1.	a = b	b ightarrow Congruent(a,b,m)	Direct Proof

English: Suppose that a = b. This tells us that $a - b = 0 = 0 \cdot m$, showing $a \equiv_m b$, by definition.

Adding Congruences

1.

Let a, b, c, d, and m be non-negative integers with $m \neq 0$. Prove that, if $a \equiv_m b$ and $c \equiv_m d$, then $a + b \equiv_m c + d$.

1.1.	$Congruent(a,b,m) \land Congruent(c,d,m)$	Assumption
1.2.	Congruent(a,b,m)	Elim \wedge : 1.1
1.3.	Congruent(c,d,m)	Elim \wedge : 1.1
1.4.	Divides(m, a-b)	Def of Congruent: 1.2
1.5.	Divides(m, c-d)	Def of Congruent: 1.3
1.6.	$\exists k, a-b = k m$	Def of Divides: 1.4
1.7.	$\exists k, c-d = k m$	Def of Divides: 1.5
1.8.	a - b = s m	Elim $\exists: 1.6$
1.9.	c-d=t m	Elim $\exists: 1.7$
1.10.	a + c - b + d = (s + t) m	Algebra: 1.8 1.9
1.11.	$\exists k, a + c - b + d = k m$	Intro $\exists: 1.10$
1.12.	Divides(m, a + c - b + d)	Undef Divides: 1.11
1.13.	Congruent(a+c,b+d,m)	Undef Congruent: 1.12
$Congruent(a, b, m) \land Congruent(c, d, m) \to Congruent(a + c, b + d, m) \qquad \text{Direct Proof}$		

English: Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we have a-b = sm and c-d = tm for some integers s and t. Adding these two equations, we see that (a + c) - (b + d) = (a - b) + (c - d) = sm + tm = (s + t)m. This shows that $a + c \equiv_m b + d$ by definition.

Multiplying Congruences

Let a, b, c, d, and m be non-negative integers with $m \neq 0$. Prove that, if $a \equiv_m b$ and $c \equiv_m d$, then $ab \equiv_m cd$.

In doing this proof formally, we will need to apply a theorem for multiplying equations. It says

MultEqns: $\forall a \forall b \forall c \forall d ((a = b \land c = d) \rightarrow (ac = bd))$

	1.1.	$Congruent(a,b,m) \land Congruent(c,d,m)$	Assumption
	1.2.	Congruent(a,b,m)	Elim \wedge : 1.1
	1.3.	Congruent(c,d,m)	Elim \wedge : 1.1
	1.4.	Divides(m, a-b)	Def of Congruent: 1.2
	1.5.	Divides(m,c-d)	Def of Congruent: 1.3
	1.6.	$\exists k, a - b = k m$	Def of Divides: 1.4
	1.7.	$\exists k, c - d = k m$	Def of Divides: 1.5
	1.8.	a - b = s m	Elim $\exists: 1.6$
	1.9.	c-d=t m	Elim $\exists: 1.7$
	1.10.	a = b + s m	Algebra: 1.8
	1.11.	c = d + t m	Algebra: 1.9
	1.12.	$a = b + s m \wedge c = d + t m$	Intro \wedge : 1.10, 1.11
	1.13.	a c = (b + s m) (d + t m)	Apply MultEqns: 1.12
	1.14.	a c - b d = (b t + d s + s t m) m	Algebra: 1.13
	1.15.	$\exists k, a c - b d = k m$	Intro $\exists: 1.14$
	1.16.	Divides(m, ac - bd)	Undef Divides: 1.15
	1.17.	Congruent(ac,bd,m)	Undef Congruent: 1.16
1.	Congr	$uent(a,b,m) \wedge Congruent(c,d,m) \rightarrow Congruent(ac,bd,m)$	Direct Proof

English: Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we have a-b = sm and c-d = tm for some integers s and t. We can write these equivalently as a = b + sm and c = d + tm. Multiplying these last two equations, we see that ac = (b + sm)(d + tm) = bd + (bt + sd + stm)m. This last equation can be rewritten ac - bd = (bt + sd + stm)m, which shows that $ac \equiv_m bd$.

Modular Arithmetic: A Property

Let a, b, and m be non-negative integers with 0 < m. Prove that $a \equiv_m b$ iff $a \mod m = b \mod m$.

This proof is longer, so we will split it into parts. We will prove each implication separately:

Lemma 1.1: $\forall a \forall b \forall m \ (0 < m \rightarrow \mathsf{mod}(a, m) = \mathsf{mod}(b, m) \rightarrow \mathsf{Congruent}(a, b, m))$ Lemma 1.2: $\forall a \forall b \forall m \ (0 < m \rightarrow \mathsf{Congruent}(a, b, m) \rightarrow \mathsf{mod}(a, m) = \mathsf{mod}(b, m))$

With those in hand, we prove this as follows. (Try it yourself here.)

1.	0 < m	Given
2.	$mod(a,m) = mod(b,m) \to Congruent(a,b,m)$	Apply Lemma1_1: 1
3.	$Congruent(a,b,m) \to mod(a,m) = mod(b,m)$	Apply Lemma1_2: 1
4.	$(mod(a,m)=mod(b,m)\toCongruent(a,b,m))\wedge$	Intro \wedge : 2, 3
	$(Congruent(a,b,m) \to mod(a,m) = mod(b,m))$	
5.	$Congruent(a,b,m) \leftrightarrow mod(a,m) = mod(b,m)$	Equivalent: 4

Now, we can move on to proving the two lemmas we used above...

Lemma 1.1

Prove that $a \mod m = b \mod m$ implies $a \equiv_m b$.

1. $0 < m$	Given
$2. a = \operatorname{div}(a,m) m + \operatorname{mod}(a,m) \wedge 0 \leq \operatorname{mod}(a,m) \wedge \operatorname{mod}(a,m) < m$	Apply Division: 1
$3. b = \operatorname{div}(b,m) m + \operatorname{mod}(b,m) \wedge 0 \leq \operatorname{mod}(b,m) \wedge \operatorname{mod}(b,m) < m$	Apply Division: 1
$4. a = \operatorname{div}(a,m) m + \operatorname{mod}(a,m) \wedge 0 \leq \operatorname{mod}(a,m)$	Elim $\wedge: 2$
5. $a = \operatorname{div}(a, m) m + \operatorname{mod}(a, m)$	Elim $\wedge: 4$
6. $b = \operatorname{div}(b,m) m + \operatorname{mod}(b,m) \land 0 \le \operatorname{mod}(b,m)$	Elim $\wedge: 3$
7. $b = \operatorname{div}(b, m) m + \operatorname{mod}(b, m)$	Elim $\wedge: 6$
8.1. $\operatorname{mod}(a,m) = \operatorname{mod}(b,m)$	Assumption
8.2. $a = \operatorname{div}(a, m) m + \operatorname{mod}(b, m)$	Substitute: 8.1, 5
8.3. $a-b = (\operatorname{div}(a,m) - \operatorname{div}(b,m)) m$	Algebra: 7 8.2
8.4. $\exists k, a-b = k m$	Intro $\exists: 8.3$
8.5. $Divides(m, a - b)$	Undef Divides: 8.4
8.6. $Congruent(a, b, m)$	Undef Congruent: 8.5
8. $mod(a,m) = mod(b,m) \to Congruent(a,b,m)$	Direct Proof

English: By the Division Theorem, we can write a and b in the form a = div(a, m)m + mod(a, m) and b = div(b, m)m + mod(b, m).

Now, suppose that mod(a, m) = mod(b, m). Then, we can calculate

$$\begin{aligned} a-b &= \left(\mathsf{div}(a,m) - \mathsf{div}(b,m)\right)m + \left(\mathsf{mod}(a,m) - \mathsf{mod}(b,M)\right) \\ &= \left(\mathsf{div}(a,m) - \mathsf{div}(b,m)\right)m \end{aligned}$$

This shows that $m \mid a - b$, which means that $a \equiv_m b$, by definition.

Lemma 1.2

Prove that $a \equiv_m b$ implies $a \mod m = b \mod m$.

In doing so, we will use the uniqueness property of the remainder, which says

$$\forall a \, \forall b \, \forall q \, \forall r \, (((a = qb + r) \land (0 \le r) \land (r < b)) \rightarrow (q = \mathsf{div}(a, b) \land r = \mathsf{mod}(a, b)))$$

1.	0 < m Given		
2.	$a = \operatorname{div}(a, m) m + \operatorname{mod}(a, m) \land 0 \le \operatorname{mod}(a, m) \land \operatorname{mod}(a, m) < m $ Apply Division: 1		
3.	$b = \operatorname{div}(b,m) m + \operatorname{mod}(b,m) \wedge 0 \leq \operatorname{mod}(b,m) \wedge \operatorname{mod}(b,m) < m$	Apply Division: 1	
4.	$a = \operatorname{div}(a,m)m + \operatorname{mod}(a,m) \wedge 0 \leq \operatorname{mod}(a,m)$	Elim $\wedge: 2$	
5.	$b=\operatorname{div}(b,m)m+\operatorname{mod}(b,m)\wedge 0\leq \operatorname{mod}(b,m)$	Elim $\wedge: 3$	
6.	$a = \operatorname{div}(a,m)m + \operatorname{mod}(a,m)$	Elim $\wedge: 4$	
7.	$b = \operatorname{div}(b,m)m + \operatorname{mod}(b,m)$	Elim $\wedge: 5$	
	8.1. $Congruent(a, b, m)$	Assumption	
	8.2. $Divides(m, a - b)$	Def of Congruent: 8.1	
	8.3. $\exists k, a-b=km$	Def of Divides: 8.2	
	8.4. a-b=km	Elim $\exists: 8.3$	
	8.5. $b = (\operatorname{div}(a, m) - k) m + \operatorname{mod}(a, m)$	Algebra: 6 7 8.4	
	8.6. $0 \leq mod(a,m)$	Elim $\wedge: 4$	
	8.7. $b = (\operatorname{div}(a, m) - k) m + \operatorname{mod}(a, m) \land 0 \le \operatorname{mod}(a, m)$	Intro \wedge : 8.5, 8.6	
	8.8. $\operatorname{mod}(a,m) < m$	Elim $\wedge: 2$	
	$8.9. b = \left(div(a,m) - k\right)m + mod(a,m) \land 0 \leq mod(a,m) \land mod(a,m) < m$	Intro \wedge : 8.7, 8.8	
	8.10. $\operatorname{div}(a,m) - k = \operatorname{div}(b,m) \wedge \operatorname{mod}(a,m) = \operatorname{mod}(b,m)$	Apply DivisionUnique: 8.9	
	8.11. $\operatorname{mod}(a,m) = \operatorname{mod}(b,m)$	Elim \wedge : 8.10	
8.	8. $\operatorname{Congruent}(a, b, m) \to \operatorname{mod}(a, m) = \operatorname{mod}(b, m)$ Direct Proof		

English: By the Division Theorem, we can write a and b in the form a = div(a, m)m + mod(a, m) and b = div(b, m)m + mod(b, m).

Now, suppose that $a \equiv_m b$. Unrolling the definitions, this says that b = a - km for some integer k. Thus, we have

$$b = \operatorname{div}(a, m) m + \operatorname{mod}(a, m) - km$$
$$= (\operatorname{div}(a, m) - k) m + \operatorname{mod}(a, m)$$

Since $0 \leq \operatorname{div}(a, m) < m$, the Division Uniqueness Theorem says that $\operatorname{mod}(a, m) = \operatorname{mod}(b, m)$.

Useful GCD Fact

Let a and b be positive integers.

Prove that $gcd(a, b) = gcd(b, a \mod b)$.

This proof is long, so we will split it into parts. We will prove each implication separately:

With those in hand, we prove this as follows.

1.	$\forall a, \forall b, \forall d, Divides(d, a) \land Divides(d, b) \rightarrow Divides(d, b) \land Divides(d, mod(a, b))$	Cite Lemma2_1
2.	$\forall a, \forall b, \forall d, Divides(d, b) \land Divides(d, mod(a, b)) \to Divides(d, a) \land Divides(d, b)$	Cite Lemma2_2
3.	$\forall b, \forall d, Divides(d, a) \land Divides(d, b) \rightarrow Divides(d, b) \land Divides(d, mod(a, b))$	Elim $\forall: 1$
4.	$\forall b, \forall d, Divides(d, b) \land Divides(d, mod(a, b)) \rightarrow Divides(d, a) \land Divides(d, b)$	Elim $\forall: 2$
5.	$\forall d, Divides(d, a) \land Divides(d, b) \to Divides(d, b) \land Divides(d, mod(a, b))$	Elim $\forall: 3$
6.	$\forall d, Divides(d, b) \land Divides(d, mod(a, b)) \rightarrow Divides(d, a) \land Divides(d, b)$	Elim $\forall: 4$
7.	$\gcd(a,b) \leq \gcd(b,mod(a,b))$	Apply Lemma3: 5
8.	$\gcd(b, mod(a, b)) \le \gcd(a, b)$	Apply Lemma3: 6
9.	$\gcd(a,b) \leq \gcd(b,mod(a,b)) \wedge \gcd(b,mod(a,b)) \leq \gcd(a,b)$	Intro $\wedge:$ 7, 8
10.	$\gcd(a,b)=\gcd(b,mod(a,b))$	Apply Lemma4: 9

English: Applying Lemma 3 to a, b, b, a mod b, its premise becomes Lemma 2.1, so we conclude that $gcd(a, b) \leq gcd(b, a \mod b)$. Applying Lemma 3 to b, a mod b, a, b, its premise becomes Lemma 2.2, so we conclude that $gcd(b, a \mod b) \leq gcd(a, b)$. Thus, by Lemma 4, we get $gcd(a, b) = gcd(b, a \mod b)$.

Lemma 2.1

Prove that $(d \mid b)$ and $(d \mid a \mod b)$ follow from $d \mid a$ and $d \mid b$.

1.	Divides(d, a)	Given
2.	Divides(d, b)	Given
3.	0 < b	Given
4.	$\exists k, a = k d$	Def of Divides: 1
5.	$\existsk,b=kd$	Def of Divides: 2
6.	a = s d	Elim $\exists: 4$
7.	b = t d	Elim $\exists: 5$
8.	$a = div(a,b) b + mod(a,b) \wedge 0 \leq mod(a,b) \wedge mod(a,b) < b$	Apply Division: 3
9.	$a = div(a,b) b + mod(a,b) \wedge 0 \leq mod(a,b)$	Elim $\wedge: 8$
10.	a = div(a,b) b + mod(a,b)	Elim $\wedge: 9$
11.	sd=div(sd,b)b+mod(sd,b)	Substitute: 6, 10
12.	sd=div(sd,td)td+mod(sd,td)	Substitute: 7, 11
13.	mod(sd,td) = (s - div(sd,td)t)d	Algebra: 12
14.	mod(a,td) = (s - div(a,td)t)d	Substitute: 6, 13
15.	mod(a,b) = (s - div(a,b)t)d	Substitute: 7, 14
16.	$\exists k, mod(a,b) = k d$	Intro $\exists: 15$
17.	Divides(d,mod(a,b))	Undef Divides: 16
18.	$Divides(d,b) \land Divides(d,mod(a,b))$	Intro $\wedge:$ 2, 17

English: Since $d \mid a$, we know that a = sd, for some integer s, by the definition of divides. Likewise, since $d \mid b$, we know that b = td, for some integer t, by the definition of divides.

By the Division Theorem, we can write a = qb + mod(a, b). Solving for mod(a, b), we have mod(a, b) = a - qb. Substituting in the prior facts about a and b and pulling out a common factor of d, we have mod(a, b) = (s - qt)d. This shows that $d \mid mod(a, b)$ by the definition of divides.

Lemma 2.2

Prove that $(d \mid a)$ and $(d \mid b)$ follow from $d \mid b$ and $d \mid a \mod b$. (Note: you will need substitute as well as algebra.)

1.	Divides(d, b)	Given
2.	Divides(d,mod(a,b))	Given
3.	0 < b	Given
4.	$\existsk,b=kd$	Def of Divides: 1
5.	$\existsk,mod(a,b)=kd$	Def of Divides: 2
6.	b = s d	Elim $\exists: 4$
7.	mod(a,b) = td	Elim $\exists: 5$
8.	$a = div(a,b) b + mod(a,b) \wedge 0 \leq mod(a,b) \wedge mod(a,b) < b$	Apply Division: 3
9.	$a = div(a,b) b + mod(a,b) \wedge 0 \leq mod(a,b)$	Elim $\wedge: 8$
10.	a = div(a,b) b + mod(a,b)	Elim $\wedge: 9$
11.	a = div(a, b) b + t d	Substitute: 7, 10
12.	a = div(a, s d) s d + t d	Substitute: 6, 11
13.	a = (div(a, s d) s + t) d	Algebra: 12
14.	$\exists k, a = k d$	Intro $\exists: 13$
15.	Divides(d, a)	Undef Divides: 14
16.	$Divides(d,a) \land Divides(d,b)$	Intro $\wedge:$ 15, 1

English: Since $d \mid b$, we know that b = sd, for some integer s, by the definition of divides. Likewise, since $d \mid a \mod b$, we know that $a \mod b = td$, for some integer t.

By the Division Theorem, we can write a = qb + mod(a, b). Substituting in the prior facts above and pulling out a common factor of d, we have a = (qs + t)d. This shows that $d \mid a$ by definition.

Lemma 3

Let a, b, c, and d be positive integers.

Prove that $gcd(a,b) \mid gcd(c,d)$ follows from $\forall x (((x \mid a) \land (x \mid b)) \rightarrow ((x \mid c) \land (x \mid d))).$

In order to do so, we will need the following two facts about GCD (the first is its definition):

 $\begin{array}{l} \text{GCD Pos:} \quad \forall a \,\forall b \,(\top \to (((\gcd(a, b) \mid a) \land (\gcd(a, b) \mid b)) \land \forall d \,(((d \mid a) \land d \mid b)) \to (d \mid \gcd(a, b)))) \\ \text{GCD Unique:} \quad \forall a \,\forall b \,\forall x \,(((x \mid a) \land (x \mid b) \land \forall d \,(((d \mid a) \land (d \mid b)) \to (d \leq x))) \to (x = \gcd(a, b))) \end{array}$

The first fact has a (trivial) premise in order to make it easier to use with apply.

1.	$\forall x, Divides(x, a) \land Divides(x, b) \rightarrow Divides(x, c) \land Divides(x, d)$	Given
2.	Т	Ad Litteram Verum
3.	$Divides(\gcd(a,b),a) \land Divides(\gcd(a,b),b) \land (\forall d, Divides(d,a) \land Divides(d,b) \rightarrow d \leq \gcd(a,b))$	Apply GCDPos: 2
4.	$Divides(\gcd(c,d),c) \land Divides(\gcd(c,d),d) \land (\forall d0, Divides(d0,c) \land Divides(d0,d) \rightarrow d0 \leq \gcd(c,d))$	Apply GCDPos: 2
5.	$Divides(\gcd(a,b),a) \land Divides(\gcd(a,b),b)$	Elim $\wedge: 3$
6.	$Divides(\gcd(a,b),a) \land Divides(\gcd(a,b),b) \to Divides(\gcd(a,b),c) \land Divides(\gcd(a,b),d)$	Elim $\forall: 1$
7.	$Divides(\gcd(a,b),c) \land Divides(\gcd(a,b),d)$	Modus Ponens: 5, 6
8.	$\forall d0, Divides(d0, c) \land Divides(d0, d) \rightarrow d0 \leq \gcd(c, d)$	Elim $\wedge: 4$
9.	$Divides(\gcd(a,b),c) \land Divides(\gcd(a,b),d) \to \gcd(a,b) \leq \gcd(c,d)$	Elim $\forall: 8$
10.	$\gcd(a,b) \leq \gcd(c,d)$	Modus Ponens: 7, 9

English: By GCD Pos, we know that gcd(a, b) | a and gcd(a, b) | b. We are given that anything that divides a and b also divides c and d. Applying that to gcd(a, b), we get that gcd(a, b) | c and gcd(a, b) | d. By GCD Pos, any positive integer with the latter two properties is no bigger than gcd(c, d). Applying that to gcd(a, b), we get that gcd(c, d).

Lemma 4

Let a and b be positive integers.

Prove that a = b follows from $a \le b$ and $b \le a$.

In order to do so, we will need the following facts about " \leq " and "<":

LessOrEqual:
$$\forall a \forall b ((a \le b) \to ((a = b) \lor (a < b)))$$

LessVsGreater: $\forall a \forall b ((a < b) \to \neg (b < a))$

The first fact is the definition of " \leq ". The says that "<" is anti-symmetric. (Hint: Prove it by cases over a < b and $\neg(a < b)$.)

1.	$a \leq b$	Given
2.	$b \leq a$	Given
3.	$a = b \lor a < b$	Apply LessOrEqual: 1
4.	$b = a \lor b < a$	Apply LessOrEqual: 2
	5.1. $a < b$	Assumption
	5.2. $\neg (b < a)$	Apply LessVsGreater: 5.1
	5.3. $b = a$	Elim $\lor:$ 4, 5.2
	5.4. $a = b$	Algebra: 5.3
5.	$a < b \rightarrow a = b$	Direct Proof
	6.1. $\neg (a < b)$	Assumption
	6.2. $a = b$	Elim $\lor:$ 3, 6.1
6.	$\neg (a < b) \rightarrow a = b$	Direct Proof
7.	a = b	Simple Cases: 5, 6

English: We will prove this by cases over whether a < b or $\neg(a < b)$.

Suppose that $\neg(a < b)$. Since $a \le b$, we must have a = b, by the definition of " \le ".

Now, suppose that a < b. This means that $\neg(b < a)$ by the anti-symmetry of "<". Since $b \le a$, we must have b = a, by the definition of ' \le ", which can be rewritten a = b.