
Formal Proofs on Congruences

Transitivity

Let a, b, and m be non-negative integers with m 6= 0.
Prove that, if a ≡m b and b ≡m c, then a ≡m c.

1.1. Congruent(a, b,m) ∧ Congruent(b, c,m)

1.2. Congruent(a, b,m)

1.3. Congruent(b, c,m)

1.4. Divides(m, a− b)

1.5. Divides(m, b− c)

1.6. ∃ k, a− b = km

1.7. ∃ k, b− c = km

1.8. a− b = sm

1.9. b− c = tm

1.10. a− c = (s + t)m

1.11. ∃ k, a− c = km

1.12. Divides(m, a− c)

1.13. Congruent(a, c,m)

1. Congruent(a, b,m) ∧ Congruent(b, c,m)→ Congruent(a, c,m)

Assumption

Elim ∧: 1.1

Elim ∧: 1.1

Def of Congruent: 1.2

Def of Congruent: 1.3

Def of Divides: 1.4

Def of Divides: 1.5

Elim ∃: 1.6

Elim ∃: 1.7

Algebra: 1.8 1.9

Intro ∃: 1.10

Undef Divides: 1.11

Undef Congruent: 1.12

Direct Proof

English: Suppose that a ≡m b and c ≡m d. Unrolling the definitions, we have a−b = sm and b−c = tm
for some integers s, t. Adding these two equations, we see that a−c = (a−b)+(b−c) = sm+ tm = (s+ t)m.
This shows that a ≡m c by definition.
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Congruence From Equation

Let a, b, and m be non-negative integers with m 6= 0.
Prove that, if a = b, then a ≡m b.

1.1. a = b

1.2. a− b = 0m

1.3. ∃ k, a− b = km

1.4. Divides(m, a− b)

1.5. Congruent(a, b,m)

1. a = b→ Congruent(a, b,m)

Assumption

Algebra: 1.1

Intro ∃: 1.2

Undef Divides: 1.3

Undef Congruent: 1.4

Direct Proof

English: Suppose that a = b. This tells us that a− b = 0 = 0 ·m, showing a ≡m b, by definition.

Adding Congruences

Let a, b, c, d, and m be non-negative integers with m 6= 0.
Prove that, if a ≡m b and c ≡m d, then a + b ≡m c + d.

1.1. Congruent(a, b,m) ∧ Congruent(c, d,m)

1.2. Congruent(a, b,m)

1.3. Congruent(c, d,m)

1.4. Divides(m, a− b)

1.5. Divides(m, c− d)

1.6. ∃ k, a− b = km

1.7. ∃ k, c− d = km

1.8. a− b = sm

1.9. c− d = tm

1.10. a + c− b + d = (s + t)m

1.11. ∃ k, a + c− b + d = km

1.12. Divides(m, a + c− b + d)

1.13. Congruent(a + c, b + d,m)

1. Congruent(a, b,m) ∧ Congruent(c, d,m)→ Congruent(a + c, b + d,m)

Assumption

Elim ∧: 1.1

Elim ∧: 1.1

Def of Congruent: 1.2

Def of Congruent: 1.3

Def of Divides: 1.4

Def of Divides: 1.5

Elim ∃: 1.6

Elim ∃: 1.7

Algebra: 1.8 1.9

Intro ∃: 1.10

Undef Divides: 1.11

Undef Congruent: 1.12

Direct Proof

English: Suppose that a ≡m b and c ≡m d. Unrolling the definitions, we have a−b = sm and c−d = tm
for some integers s and t. Adding these two equations, we see that (a + c) − (b + d) = (a − b) + (c − d) =
sm + tm = (s + t)m. This shows that a + c ≡m b + d by definition.
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Multiplying Congruences

Let a, b, c, d, and m be non-negative integers with m 6= 0.
Prove that, if a ≡m b and c ≡m d, then ab ≡m cd.

In doing this proof formally, we will need to apply a theorem for multiplying equations. It says

MultEqns: ∀a∀b∀c∀d ((a = b ∧ c = d)→ (ac = bd))

1.1. Congruent(a, b,m) ∧ Congruent(c, d,m)

1.2. Congruent(a, b,m)

1.3. Congruent(c, d,m)

1.4. Divides(m, a− b)

1.5. Divides(m, c− d)

1.6. ∃ k, a− b = km

1.7. ∃ k, c− d = km

1.8. a− b = sm

1.9. c− d = tm

1.10. a = b + sm

1.11. c = d + tm

1.12. a = b + sm ∧ c = d + tm

1.13. a c = (b + sm) (d + tm)

1.14. a c− b d = (b t + d s + s tm)m

1.15. ∃ k, a c− b d = km

1.16. Divides(m, a c− b d)

1.17. Congruent(a c, b d,m)

1. Congruent(a, b,m) ∧ Congruent(c, d,m)→ Congruent(a c, b d,m)

Assumption

Elim ∧: 1.1

Elim ∧: 1.1

Def of Congruent: 1.2

Def of Congruent: 1.3

Def of Divides: 1.4

Def of Divides: 1.5

Elim ∃: 1.6

Elim ∃: 1.7

Algebra: 1.8

Algebra: 1.9

Intro ∧: 1.10, 1.11

Apply MultEqns: 1.12

Algebra: 1.13

Intro ∃: 1.14

Undef Divides: 1.15

Undef Congruent: 1.16

Direct Proof

English: Suppose that a ≡m b and c ≡m d. Unrolling the definitions, we have a−b = sm and c−d = tm
for some integers s and t. We can write these equivalently as a = b+ sm and c = d+ tm. Multiplying these
last two equations, we see that ac = (b + sm)(d + tm) = bd + (bt + sd + stm)m. This last equation can be
rewritten ac− bd = (bt + sd + stm)m, which shows that ac ≡m bd.
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Modular Arithmetic: A Property

Let a, b, and m be non-negative integers with 0 < m.
Prove that a ≡m b iff a mod m = b mod m.

This proof is longer, so we will split it into parts. We will prove each implication separately:

Lemma 1.1: ∀a ∀b∀m (0 < m→ mod(a,m) = mod(b,m)→ Congruent(a, b,m))

Lemma 1.2: ∀a ∀b∀m (0 < m→ Congruent(a, b,m)→ mod(a,m) = mod(b,m))

With those in hand, we prove this as follows. (Try it yourself here.)

1. 0 < m

2. mod(a,m) = mod(b,m)→ Congruent(a, b,m)

3. Congruent(a, b,m)→ mod(a,m) = mod(b,m)

4. (mod(a,m) = mod(b,m)→ Congruent(a, b,m)) ∧
(Congruent(a, b,m)→ mod(a,m) = mod(b,m))

5. Congruent(a, b,m)↔ mod(a,m) = mod(b,m)

Given

Apply Lemma1 1: 1

Apply Lemma1 2: 1

Intro ∧: 2, 3

Equivalent: 4

Now, we can move on to proving the two lemmas we used above. . .

Lemma 1.1

Prove that a mod m = b mod m implies a ≡m b.

1. 0 < m

2. a = div(a,m)m + mod(a,m) ∧ 0 ≤ mod(a,m) ∧mod(a,m) < m

3. b = div(b,m)m + mod(b,m) ∧ 0 ≤ mod(b,m) ∧mod(b,m) < m

4. a = div(a,m)m + mod(a,m) ∧ 0 ≤ mod(a,m)

5. a = div(a,m)m + mod(a,m)

6. b = div(b,m)m + mod(b,m) ∧ 0 ≤ mod(b,m)

7. b = div(b,m)m + mod(b,m)

8.1. mod(a,m) = mod(b,m)

8.2. a = div(a,m)m + mod(b,m)

8.3. a− b = (div(a,m)− div(b,m))m

8.4. ∃ k, a− b = km

8.5. Divides(m, a− b)

8.6. Congruent(a, b,m)

8. mod(a,m) = mod(b,m)→ Congruent(a, b,m)

Given

Apply Division: 1

Apply Division: 1

Elim ∧: 2

Elim ∧: 4

Elim ∧: 3

Elim ∧: 6

Assumption

Substitute: 8.1, 5

Algebra: 7 8.2

Intro ∃: 8.3

Undef Divides: 8.4

Undef Congruent: 8.5

Direct Proof

English: By the Division Theorem, we can write a and b in the form a = div(a,m)m + mod(a,m) and
b = div(b,m)m + mod(b,m).

Now, suppose that mod(a,m) = mod(b,m). Then, we can calculate

a− b = (div(a,m)− div(b,m))m + (mod(a,m)−mod(b,M))

= (div(a,m)− div(b,m))m

This shows that m | a− b, which means that a ≡m b, by definition.
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Lemma 1.2

Prove that a ≡m b implies a mod m = b mod m.

In doing so, we will use the uniqueness property of the remainder, which says

∀a ∀b∀q ∀r (((a = qb + r) ∧ (0 ≤ r) ∧ (r < b))→ (q = div(a, b) ∧ r = mod(a, b)))

1. 0 < m

2. a = div(a,m)m + mod(a,m) ∧ 0 ≤ mod(a,m) ∧mod(a,m) < m

3. b = div(b,m)m + mod(b,m) ∧ 0 ≤ mod(b,m) ∧mod(b,m) < m

4. a = div(a,m)m + mod(a,m) ∧ 0 ≤ mod(a,m)

5. b = div(b,m)m + mod(b,m) ∧ 0 ≤ mod(b,m)

6. a = div(a,m)m + mod(a,m)

7. b = div(b,m)m + mod(b,m)

8.1. Congruent(a, b,m)

8.2. Divides(m, a− b)

8.3. ∃ k, a− b = km

8.4. a− b = km

8.5. b = (div(a,m)− k)m + mod(a,m)

8.6. 0 ≤ mod(a,m)

8.7. b = (div(a,m)− k)m + mod(a,m) ∧ 0 ≤ mod(a,m)

8.8. mod(a,m) < m

8.9. b = (div(a,m)− k)m + mod(a,m) ∧ 0 ≤ mod(a,m) ∧mod(a,m) < m

8.10. div(a,m)− k = div(b,m) ∧mod(a,m) = mod(b,m)

8.11. mod(a,m) = mod(b,m)

8. Congruent(a, b,m)→ mod(a,m) = mod(b,m)

Given

Apply Division: 1

Apply Division: 1

Elim ∧: 2

Elim ∧: 3

Elim ∧: 4

Elim ∧: 5

Assumption

Def of Congruent: 8.1

Def of Divides: 8.2

Elim ∃: 8.3

Algebra: 6 7 8.4

Elim ∧: 4

Intro ∧: 8.5, 8.6

Elim ∧: 2

Intro ∧: 8.7, 8.8

Apply DivisionUnique: 8.9

Elim ∧: 8.10

Direct Proof

English: By the Division Theorem, we can write a and b in the form a = div(a,m)m + mod(a,m) and
b = div(b,m)m + mod(b,m).

Now, suppose that a ≡m b. Unrolling the definitions, this says that b = a−km for some integer k. Thus,
we have

b = div(a,m)m + mod(a,m)− km

= (div(a,m)− k)m + mod(a,m)

Since 0 ≤ div(a,m) < m, the Division Uniqueness Theorem says that mod(a,m) = mod(b,m).
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Useful GCD Fact

Let a and b be positive integers.
Prove that gcd(a, b) = gcd(b, a mod b).

This proof is long, so we will split it into parts. We will prove each implication separately:

Lemma 2.1: ∀a ∀b∀d (((d | a) ∧ (d | b))→ ((d | b) ∧ (d | a mod b)))

Lemma 2.2: ∀a ∀b∀d (((d | b) ∧ (d | a mod b))→ ((d | a) ∧ (d | b)))
Lemma 3: ∀a ∀b∀c∀d (∀x ((x | a) ∧ (x | b))→ ((x | c) ∧ (x | d))→ (gcd(a, b) ≤ gcd(c, d)))

Lemma 4: ∀a ∀b (((a ≤ b) ∧ (b ≤ a))→ (a = b))

With those in hand, we prove this as follows.

1. ∀ a,∀ b,∀ d,Divides(d, a) ∧ Divides(d, b)→ Divides(d, b) ∧ Divides(d,mod(a, b))

2. ∀ a,∀ b,∀ d,Divides(d, b) ∧ Divides(d,mod(a, b))→ Divides(d, a) ∧ Divides(d, b)

3. ∀ b,∀ d,Divides(d, a) ∧ Divides(d, b)→ Divides(d, b) ∧ Divides(d,mod(a, b))

4. ∀ b,∀ d,Divides(d, b) ∧ Divides(d,mod(a, b))→ Divides(d, a) ∧ Divides(d, b)

5. ∀ d,Divides(d, a) ∧ Divides(d, b)→ Divides(d, b) ∧ Divides(d,mod(a, b))

6. ∀ d,Divides(d, b) ∧ Divides(d,mod(a, b))→ Divides(d, a) ∧ Divides(d, b)

7. gcd(a, b) ≤ gcd(b,mod(a, b))

8. gcd(b,mod(a, b)) ≤ gcd(a, b)

9. gcd(a, b) ≤ gcd(b,mod(a, b)) ∧ gcd(b,mod(a, b)) ≤ gcd(a, b)

10. gcd(a, b) = gcd(b,mod(a, b))

Cite Lemma2 1

Cite Lemma2 2

Elim ∀: 1

Elim ∀: 2

Elim ∀: 3

Elim ∀: 4

Apply Lemma3: 5

Apply Lemma3: 6

Intro ∧: 7, 8

Apply Lemma4: 9

English: Applying Lemma 3 to a, b, b, a mod b, its premise becomes Lemma 2.1, so we conclude that
gcd(a, b) ≤ gcd(b, a mod b). Applying Lemma 3 to b, a mod b, a, b, its premise becomes Lemma 2.2, so we
conclude that gcd(b, a mod b) ≤ gcd(a, b). Thus, by Lemma 4, we get gcd(a, b) = gcd(b, a mod b).
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Lemma 2.1

Prove that (d | b) and (d | a mod b) follow from d | a and d | b.

1. Divides(d, a)

2. Divides(d, b)

3. 0 < b

4. ∃ k, a = k d

5. ∃ k, b = k d

6. a = s d

7. b = t d

8. a = div(a, b) b + mod(a, b) ∧ 0 ≤ mod(a, b) ∧mod(a, b) < b

9. a = div(a, b) b + mod(a, b) ∧ 0 ≤ mod(a, b)

10. a = div(a, b) b + mod(a, b)

11. s d = div(s d, b) b + mod(s d, b)

12. s d = div(s d, t d) t d + mod(s d, t d)

13. mod(s d, t d) = (s− div(s d, t d) t) d

14. mod(a, t d) = (s− div(a, t d) t) d

15. mod(a, b) = (s− div(a, b) t) d

16. ∃ k,mod(a, b) = k d

17. Divides(d,mod(a, b))

18. Divides(d, b) ∧ Divides(d,mod(a, b))

Given

Given

Given

Def of Divides: 1

Def of Divides: 2

Elim ∃: 4

Elim ∃: 5

Apply Division: 3

Elim ∧: 8

Elim ∧: 9

Substitute: 6, 10

Substitute: 7, 11

Algebra: 12

Substitute: 6, 13

Substitute: 7, 14

Intro ∃: 15

Undef Divides: 16

Intro ∧: 2, 17

English: Since d | a, we know that a = sd, for some integer s, by the definition of divides. Likewise,
since d | b, we know that b = td, for some integer t, by the definition of divides.

By the Division Theorem, we can write a = qb + mod(a, b). Solving for mod(a, b), we have mod(a, b) =
a − qb. Substituting in the prior facts about a and b and pulling out a common factor of d, we have
mod(a, b) = (s− qt)d. This shows that d | mod(a, b) by the definition of divides.
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Lemma 2.2

Prove that (d | a) and (d | b) follow from d | b and d | a mod b.
(Note: you will need substitute as well as algebra.)

1. Divides(d, b)

2. Divides(d,mod(a, b))

3. 0 < b

4. ∃ k, b = k d

5. ∃ k,mod(a, b) = k d

6. b = s d

7. mod(a, b) = t d

8. a = div(a, b) b + mod(a, b) ∧ 0 ≤ mod(a, b) ∧mod(a, b) < b

9. a = div(a, b) b + mod(a, b) ∧ 0 ≤ mod(a, b)

10. a = div(a, b) b + mod(a, b)

11. a = div(a, b) b + t d

12. a = div(a, s d) s d + t d

13. a = (div(a, s d) s + t) d

14. ∃ k, a = k d

15. Divides(d, a)

16. Divides(d, a) ∧ Divides(d, b)

Given

Given

Given

Def of Divides: 1

Def of Divides: 2

Elim ∃: 4

Elim ∃: 5

Apply Division: 3

Elim ∧: 8

Elim ∧: 9

Substitute: 7, 10

Substitute: 6, 11

Algebra: 12

Intro ∃: 13

Undef Divides: 14

Intro ∧: 15, 1

English: Since d | b, we know that b = sd, for some integer s, by the definition of divides. Likewise,
since d | a mod b, we know that a mod b = td, for some integer t.

By the Division Theorem, we can write a = qb + mod(a, b). Substituting in the prior facts above and
pulling out a common factor of d, we have a = (qs + t)d. This shows that d | a by definition.
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Lemma 3

Let a, b, c, and d be positive integers.
Prove that gcd(a, b) | gcd(c, d) follows from ∀x (((x | a) ∧ (x | b))→ ((x | c) ∧ (x | d))).

In order to do so, we will need the following two facts about GCD (the first is its definition):

GCD Pos: ∀a∀b (> → (((gcd(a, b) | a) ∧ (gcd(a, b) | b)) ∧ ∀d (((d | a) ∧ d | b))→ (d | gcd(a, b))))

GCD Unique: ∀a∀b∀x (((x | a) ∧ (x | b) ∧ ∀d (((d | a) ∧ (d | b))→ (d ≤ x)))→ (x = gcd(a, b)))

The first fact has a (trivial) premise in order to make it easier to use with apply.

1. ∀x,Divides(x, a) ∧ Divides(x, b)→ Divides(x, c) ∧ Divides(x, d)

2. >
3. Divides(gcd(a, b), a) ∧ Divides(gcd(a, b), b) ∧ (∀ d,Divides(d, a) ∧ Divides(d, b)→ d ≤ gcd(a, b))

4. Divides(gcd(c, d), c) ∧ Divides(gcd(c, d), d) ∧ (∀ d0,Divides(d0, c) ∧ Divides(d0, d)→ d0 ≤ gcd(c, d))

5. Divides(gcd(a, b), a) ∧ Divides(gcd(a, b), b)

6. Divides(gcd(a, b), a) ∧ Divides(gcd(a, b), b)→ Divides(gcd(a, b), c) ∧ Divides(gcd(a, b), d)

7. Divides(gcd(a, b), c) ∧ Divides(gcd(a, b), d)

8. ∀ d0,Divides(d0, c) ∧ Divides(d0, d)→ d0 ≤ gcd(c, d)

9. Divides(gcd(a, b), c) ∧ Divides(gcd(a, b), d)→ gcd(a, b) ≤ gcd(c, d)

10. gcd(a, b) ≤ gcd(c, d)

Given

Ad Litteram Verum

Apply GCDPos: 2

Apply GCDPos: 2

Elim ∧: 3

Elim ∀: 1

Modus Ponens: 5, 6

Elim ∧: 4

Elim ∀: 8

Modus Ponens: 7, 9

English: By GCD Pos, we know that gcd(a, b) | a and gcd(a, b) | b. We are given that anything that
divides a and b also divides c and d. Applying that to gcd(a, b), we get that gcd(a, b) | c and gcd(a, b) | d.
By GCD Pos, any positive integer with the latter two properties is no bigger than gcd(c, d). Applying that
to gcd(a, b), we get that gcd(a, b) ≤ gcd(c, d).
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Lemma 4

Let a and b be positive integers.
Prove that a = b follows from a ≤ b and b ≤ a.

In order to do so, we will need the following facts about “≤” and “<”:

LessOrEqual: ∀a∀b ((a ≤ b)→ ((a = b) ∨ (a < b)))

LessVsGreater: ∀a∀b ((a < b)→ ¬(b < a))

The first fact is the definition of “≤”. The says that “<” is anti-symmetric.
(Hint: Prove it by cases over a < b and ¬(a < b).)

1. a ≤ b

2. b ≤ a

3. a = b ∨ a < b

4. b = a ∨ b < a

5.1. a < b

5.2. ¬(b < a)

5.3. b = a

5.4. a = b

5. a < b→ a = b

6.1. ¬(a < b)

6.2. a = b

6. ¬(a < b)→ a = b

7. a = b

Given

Given

Apply LessOrEqual: 1

Apply LessOrEqual: 2

Assumption

Apply LessVsGreater: 5.1

Elim ∨: 4, 5.2

Algebra: 5.3

Direct Proof

Assumption

Elim ∨: 3, 6.1

Direct Proof

Simple Cases: 5, 6

English: We will prove this by cases over whether a < b or ¬(a < b).

Suppose that ¬(a < b). Since a ≤ b, we must have a = b, by the definition of “≤”.

Now, suppose that a < b. This means that ¬(b < a) by the anti-symmetry of “<”. Since b ≤ a, we must
have b = a, by the definition of ‘≤”, which can be rewritten a = b.
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