CSE 311 Section MR

Midterm Review




Administrivia




Announcements & Reminders

o HWG6
o Was due Wednesday 11/6
o Late due date Saturday 11/9

e Midterm is Coming Next Week!!!
o Wednesday 11/13 @ 6-7:30 pm in PAAA102 and A118
o If you cannot make it, please let us know ASAP and we will schedule you for a
makeup



Problem 1: Translation




Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following
predicates:

* soy(x) is true iff x contains soy milk. * decaf(x) is true iff x is not caffeinated.
* whole(x) is true iff x contains whole milk. ¢ vegan(x) is true iff x is vegan.
* sugar(x) is true iff x contains sugar * RobbielLikes(x) is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use
quantifiers, the predicates above, and usual math connectors like = and #.

a) Coffee drinks with whole milk are not vegan
b) Robbie only likes one coffee drink, and that drink is not vegan

c) There is a drink that has both sugar and soy milk.

Work on this problem with the people around you.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

a) Coffee drinks with whole milk are not vegan

b) Robbie only likes one coffee drink, and that drink is not vegan

c) There is a drink that has both sugar and soy milk.



Problem 1 - Translation

a)

soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Coffee drinks with whole milk are not vegan

Vx(whole(x) = —wvegan(x))

Robbie only likes one coffee drink, and that drink is not vegan

There is a drink that has both sugar and soy milk.



Problem 1 - Translation

a)

soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Coffee drinks with whole milk are not vegan

Vx(whole(x) = —wvegan(x))

Robbie only likes one coffee drink, and that drink is not vegan
dxVy(RobbieLikes(x) A - Vegan(x) A [RobbieLikes(y) —» x = y])

There is a drink that has both sugar and soy milk.



Problem 1 - Translation

a)

soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Coffee drinks with whole milk are not vegan

Vx(whole(x) = —wvegan(x))

Robbie only likes one coffee drink, and that drink is not vegan

dxVy(RobbieLikes(x) A - Vegan(x) A [RobbieLikes(y) —» x = y])
Or 3x(RobbieLikes(x) A = Vegan(x) A Vy[RobbieLikes(y) —» x = y])

There is a drink that has both sugar and soy milk.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

a) Coffee drinks with whole milk are not vegan

Vx(whole(x) = —wvegan(x))

b) Robbie only likes one coffee drink, and that drink is not vegan

dxVy(RobbieLikes(x) A - Vegan(x) A [RobbieLikes(y) —» x = y])
Or 3x(RobbieLikes(x) A = Vegan(x) A Vy[RobbieLikes(y) —» x = y])

c) There is a drink that has both sugar and soy milk.

Elx(sugar(x) A soy(x))



Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following
predicates:

* soy(x) is true iff x contains soy milk. * decaf(x) is true iff x is not caffeinated.
* whole(x) is true iff x contains whole milk. ¢ vegan(x) is true iff x is vegan.
* sugar(x) is true iff x contains sugar * RobbieLikes(x) is true iff Robbie likes the drink x.

(a) Coffee drinks with whole milk are not vegan.

(d) Translate the contrapositive of part (a) and write a matching (natural) English sentence.

Work on this problem with the people around you.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

(a) Coffee drinks with whole milk are not vegan.

(d) Translate the contrapositive of part (a) and write a matching (natural) English sentence.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

(a) Coffee drinks with whole milk are not vegan.

(d) Translate the contrapositive of part (a) and write a matching (natural) English sentence.

Vx(vegan(x) — —|whole(x))



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

(a) Coffee drinks with whole milk are not vegan.

(d) Translate the contrapositive of part (a) and write a matching (natural) English sentence.

Vx(vegan(x) — —|whole(x))

Vegan coffee drinks do not contain whole milk.



Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following
predicates:

* soy(x) is true iff x contains soy milk. * decaf(x) is true iff x is not caffeinated.
* whole(x) is true iff x contains whole milk. ¢ vegan(x) is true iff x is vegan.
* sugar(x) is true iff x contains sugar * RobbieLikes(x) is true iff Robbie likes the drink x.

Translate the following symbolic logic statementinto a (natural) English sentence.
Take advantage of domain restriction.

Vx([decaf(x) A RobbieLikes(x)] = sugar(x))

Work on this problem with the people around you.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))

Every decaf drink that Robbie likes has sugar.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))

Every decaf drink that Robbie likes has sugar.

Statements like “For every decaf drink, if Robbie likes it then it has sugar” are
equivalent,but only partially take advantage of domain restriction.



Problem 1 - Translation

Let your domain of discourse be all coffee drinks. You should use the following
predicates:

* soy(x) is true iff x contains soy milk. * decaf(x) is true iff x is not caffeinated.
* whole(x) is true iff x contains whole milk. ¢ vegan(x) is true iff x is vegan.
* sugar(x) is true iff x contains sugar * RobbieLikes(x) is true iff Robbie likes the drink x.

Vz([decaf(xz) A RobbieLikes(x)] — sugar(zx))

Write the negation of part (e) in predicate logic and translate it into a (natural) English sentence. Take
advantage of domain restriction.



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Negate:

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))



Problem 1 - Translation

Negate:

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))

—Nx([decaf(x) A RobbieLikes(x)] — sugar(x))

soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

= Jx (ﬂ([decaf(x) A RobbieLikes(x)] — sugar(x)))

= Jx (ﬁ(ﬁ[decaf(x) A RobbieLikes(x)] Vv sugar(x)))

= Jx(——[decaf(x) A RobbieLikes(x)] A =sugar(x))

= Jx(decaf(x) A RobbieLikes(x) A —sugar(x))



soy(x) is true iff x contains soy milk

whole(x) is true iff x contains whole milk
sugar(x)is true iff x contains sugar

decaf(x) is true iff x is not caffeinate

vegan(x)is true iff x is vegan

RobbieLikes(x) is true iff Robbie likes the drink x

Problem 1 - Translation

Negate:

Vx([decaf(x) A RobbieLikes(x)] — sugar(x))
—Nx([decaf(x) A RobbieLikes(x)] — sugar(x))
= Jx (ﬂ([decaf(x) A RobbieLikes(x)] — sugar(x)))
= Jx (ﬁ(ﬁ[decaf(x) A RobbieLikes(x)] v sugar(x)))
= Jx(——[decaf(x) A RobbieLikes(x)] A =sugar(x))

= Jx(decaf(x) A RobbieLikes(x) A —~sugar(x There is a decaf drink that
( (%) (6] A=SUEAR L)) Robbie likes without sugar.



Problem 2: Circuits and Normal Forms




Problem 2 - Circuits and Normal Forms

—BINARY TO DECIMAL DECODER
N
B NoT >0
L~
S
A ))—-4
-

THIS _CONVERTS . A B

A _TWO=-RIT

BINARY NUMBER

TO TS _DEQAMAL

ERU\VALENT,

Here’s a complex circuit.

(a) DNF for the output “277?

(b) CNF for the output “1”?

(c) DNF for the outputs greater than
“17?

(d) How does adding an input affect the
outputs?



Problem 2 - Circuits and Normal Forms

—BINARY TO DECIMAL DECODER

B

N 7 |\3/
\{v

THIS __CONVERTS

A B

A _TWO=-RIT

FF

BINARY NUMBER

TO TS _DEQAMAL

ERU\VALENT,

Some tips:
e Complete the truth table
e Focus on one output at a time
e Recall CNF/DNF structure
e Eliminate answers



Problem 2 - Circuits and Normal Forms

Eliminate answers

— BINARY TO DECIMAL _DECODER _
B fas - Some tips:
il i e Complete the truth table
A :>o—« N1 e Focus on one output at a time
e Recall CNF/DNF structure

W °
P
X

THIS __CONVERTS. A B 10O 1.2 2
A _TWO=RIT FL |TF FF
BINARY NUMBER
TO 1TSS DECQIMAL

ERU\VALENT,

Work on this problem with the people around you.



Problem 2 - Circuits and Normal Forms

. BINARY TO DECIMAL _DECODER
N
T B ==8—{NT>0
v
e
F A ==
/ o

THIS.  _CONVERTS

A_TWO=-RIT

e DAN A RN NUMBE.
TO 1TSS _DEAMAL

RIM LI

ERUI\VALENT,

Some tips:
e Complete the truth table
e Focus on one output at a time
e Recall CNF/DNF structure
e Eliminate answers

Work backward from one
output at a time



Problem 2 - Circuits and Normal Forms

Some tips:

Complete the truth table
Focus on one output at a time
Recall CNF/DNF structure
Eliminate answers

(a) What is the DNF for the output “2”?
(i) (AA-B)
(i) (A v—B)
(iii) (—A AB) V(A A—B) V(A AB)
(iv) (A VB) A(A v—-B) A(—A VB)

DNEF: True rows — (p AND q) OR ...

AR 123

; {"r ‘Fl‘ ; ,:_“ f CNF: False rows — negate —
TFIFFE TF (NOT p OR NOT q)
TTIFFFT

AND ...



Problem 2 - Circuits and Normal Forms

Some tips:
(a) What is the DNF for the output “2”? e Complete the truth table
(i) (A A-B) e Focus on one output at a time
e Recall CNF/DNF structure
e Eliminate answers

A

(iii) (—A AB) V(A A—B) V(A AB)

A B A B A

A eloaez Eliminate based on structure
FFITF FF

ETIFTFF

T F (FFTF

TTI|IFFET




Problem 2 - Circuits and Normal Forms

Some tips:

(a) What is the(DNF|for the output|“2”p e Complete the truth table
(1) (A A—B)

e Focus on one output at a time
—H— e e Recall CNF/DNF structure
e Eliminate answers

- tAAB A ABvAAB)
- A B~ tAv-—BrAtAvB)-

A elo alelz Eliminate based on number of terms

F F |T FlFF

E T |FTIFIF

T F IFFITIF

FFIFIT




Problem 2 - Circuits and Normal Forms

Some tips:

(a) What is the(DNF|for the output|“2”p e Complete the truth table
[ (i) (A /\ﬂB)] e Focus on one output at a time
—GH—A—B- e Recall CNF/DNF structure

e Eliminate answers

DNEF: True rows — (p AND q) OR ...
CNF: False rows — negate —
(NOT p OR NOT q)
AND ...

, (C), (d) with the folks around you.
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Problem 2 - Circuits and Normal Forms

Some tips:

Complete the truth table
Focus on one output at a time
Recall CNF/DNF structure
Eliminate answers

(b) What is the CNF for the output “17?
(i) (AA-B)
(i) (A v-B)
(iii) (—A v-B) A(—A VB) A(A V—B)
(iv) (A VB) A(—A V—B) A(—A VB)

DNEF: True rows — (p AND q) OR ...

A RIO 323

; {"r ‘|_£ 4’ ,:_" f CNF: False rows — negate —
TFIEFETF (NOT p OR NOT q)
TTIFFET

AND ...



Problem 2 - Circuits and Normal Forms

b) What is the CNF for th «q9 Some tips:
) et e SR AT e Complete the truth table

~—AA—B- e Focus on one output at a time
(i) (A v—B) e Recall CNF/DNF structure
(iii) (=A V=B) A(=A VB) A(A V—B) e Eliminate answers

(iv) (A VB) A(—A V—B) A(—A VB)

Aelo12z DNF: True rows — (p AND q) OR ...
; fr = ? £ f CNF: False rows — negate —
TFIFFTF (NOT p OR NOT q)
TTIFFFT

AND ...



Problem 2 - Circuits and Normal Forms

' — Some tips:
(b) What is the|CNF [for the output|“1 e Complete the truth table
~H—AA—B>- e Focus on one output at a time
(i) (A v—B) e Recall CNF/DNF structure
e Eliminate answers

(iii)) (—A v-B) A(—-A VB) A(A v—-B)
(iv) (A VB) A(—A v—-B) A(—A VB)

DNEF: True rows — (p AND q) OR ...

olalz =
£L] ‘Fl‘ ; ": f CNF: False rows — negate —
T FIEFFE (NOT p OR NOT q)
(T TIFIFF T AND ...




Problem 2 - Circuits and Normal Forms

Some tips:

(b) What is the|CNF [for the output|“1”

e Complete the truth table
~t—tArA—B3- e Focus on one output at a time
e Recall CNF/DNF structure
e Eliminate answers

A B
(iii) (A V-B) A(-A VB) A(A V-B)
[(iv) (A VB) A(-A V-B) A(-A VB)|

ol1l2 2 CNF is a lot longer than DNF for one
A W XA P element of this circuit...
T |FITIFF
T (FIF [T F
(T TIFIFF T




Problem 2 - Circuits and Normal Forms

(c) What is the DNF for the outputs greater than “17?

Avlo12z
FE|TF FF
ETIFTEF
TFIFFTE
TTIFFFET

Some tips:

e Complete the truth table

e Focus on one output at a time
e Recall CNF/DNF structure

e Eliminate answers

DNEF: True rows — (p AND q) OR ...
CNF: False rows — negate —

(NOT p OR NOT q)
AND ...



Problem 2 - Circuits and Normal Forms

Some tips:
e Complete the truth table
e Focus on one output at a time
e Recall CNF/DNF structure
e Eliminate answers

(c) What is the DNF for the outputs greater than “17?

R DNF: True rows — (p AND q) OR ...
F F 'Fr ; ;f CNF: False rows — negate —

ﬁ FFEITF (NOT p OR NOT q)

(T TIFFIFT AND ...



Problem 2 - Circuits and Normal Forms

Some tips:
e Complete the truth table
(c) What is the DNF for the outputs greater than “17? e Focus onone OUtPUt atatime
e Recall CNF/DNF structure
e Eliminate answers

(A A—B) V(A AB)

For two elements, DNF and CNF are

AR IO 323 )

E £ T ; ;g equal length (half of the inputs).
ﬁll’ FITFE
(T TIFFIFET 1 input combination : 1 output



Problem 2 - Circuits and Normal Forms

—BINARY TO DECIMAL DECODER

B

N 7 |\Z/
\{v

THIS __CONVERTS

A B

A_TWO=-RIT

F

o BINARY NUMBER _F

TO 1TSS _DEQAMAL

F
T
TF
TT

ERUI\VALENT,

Some tips:
e Complete the truth table
e Focus on one output at a time
e Recall CNF/DNF structure
e Eliminate answers

(d): Binary — Decimal, n — 2"n

Similar to a truth table! 1:1



Problem 2 - Circuits and Normal Forms

— BINARY TO DECIMAL_DECODER
B fas S Some tips:
il i e Complete the truth table
A :>o—« N1 e Focus on one output at a time
e Recall CNF/DNF structure
} il e Eliminate answers
e o Complex circuits decomposition,

implementation in hardware

THIS.__COoNVERTS A B [0 1.2 3 (Minecraft redstone)
A_TWO=RIT FFL T F FF
e BINARY Numeer F T |E T F F
1o 115 deamaL T F |F F TF
EQUIVALENT. TTI|FFFT
Credit:

https://gaming.stackexchange.com/questions/142191/how-to-build-a-two-bit-binary-to-decimal-decoder-using-redstone



Problem 3: Boolean Algebra




Problem 3 - Boolean Algebra

Consider the following Boolean expression:
(A+A"-B)-(A+ B)

(a) Simplify the given Boolean expression

(b) Identify whether the simplified expression is a tautology, contradiction, or neither

Work on this problem with the people around you.



Problem 3 - Boolean Algebra

Consider the following Boolean expression:
(A+A"-B)-(A+ B)
(a) Simplify the given Boolean expression

(i) Apply the Distributive Law
=(A-(A+B))+(A"-B-(A+ B))



Problem 3 - Boolean Algebra

Consider the following Boolean expression:
(A+A"-B)-(A+ B)
(a) Simplify the given Boolean expression

(i) Apply the Distributive Law
=(A-(A+B))+(A"-B-(A+ B))

(i) Simplify using the Distributive Law

=(A-A+A-B)+(A'"-B-A+ A'-B-: B)



Problem 3 - Boolean Algebra

Consider the following Boolean expression:
(A+A"-B)-(A+ B)
(a) Simplify the given Boolean expression

(iii) Continue simplifying
=(A-A+A-B)+(A'"-A-B+ A"-B-B)

=(A+A-B)+(0-B+ A'-B)
=A-(14+ B)+ (A" - B)
=(A-1)+ (A"- B)
= (4) + (4" B)



Problem 3 - Boolean Algebra

(A) + (A" B)|
(b) Identify whether the simplified expression is a tautology, contradiction, or neither
Tautology = always true

Contradiction = always false

Consider A = (0 and B = 0:

= (A)+(4"- B)
(0) + (0" - 0)
= (0) + (1-0)
= (0) + (0)
=0



Problem 3 - Boolean Algebra

(A) + (A" B)

(b) Identify whether the simplified expression is a tautology, contradiction, or neither

Tautology = always true Contradiction = always false

Consider A =1and B =0



Problem 3 - Boolean Algebra

(A) + (A" B)

(b) Identify whether the simplified expression is a tautology, contradiction, or neither

Tautology = always true Contradiction = always false

Consider A =0and B =1
= (A)+(4"- B)

(0) + (0’ - 1)

=(0)+(1-1)

= (0) + (1)
=1



Problem 3 - Boolean Algebra

(A) + (A" B)

(b) Identify whether the simplified expression is a tautology, contradiction, or neither

Tautology = always true Contradiction = always false

Consider A =1and B =1
= (A) + (A" - B)

= (1) +(1"-1)
= (1) + (0-1)

= (1) +(0)
=1



Problem 3 - Boolean Algebra (A) + (A - B)

(b) Identify whether the simplified expression is a tautology, contradiction, or neither

Tautology = always true Contradiction = always false
A B (4)+ @A -B) Since the expression evaluates to
0 0 0 1 in some cases and 0 in others, it

is neither a tautology nor a
contradiction.



Problem 4: Even Steven




Problem 4 - Even Steven

Prove that for all integers k, k(k +3) is even.
Recall that Even(z) := Jk(x = 2k) and 0dd(z) := Jk(x = 2k + 1)

(a) Let your domain be integers. Write the predicate logic of this claim.

(b) Write an English proof for this claim.



Problem 4 - Even Steven

Prove that for all integers k, k(k +3) is even.
Recall that Even(z) := Jk(x = 2k) and 0dd(z) := Jk(x = 2k + 1)
(a) Let your domain be integers. Write the predicate logic of this claim.

Vk(Even(k(k + 3)))

(b) Write an English proof for this claim.



Problem 4 - Even Steven

(b) Write an English proof for this claim.

Let k be an arbitrary integer.
Case 1: k is even

Case 2: k is odd

These cases are exhaustive, so the claim that k(k + 3) is even must hold.
Since k was arbitrary, the claim holds for all k.



Problem 4 - Even Steven

(b) Write an English proof for this claim.

Let k& be an arbitrary integer.
Case 1: k is even
By the definition of even, k = 2j for some integer j
So substituting for k into k(k + 3):

k(k+3) = (24)(25 + 3) = 2(25% + 3j)

k(k+3) = 2n, where n = (252 + 3;) and n is an integer since j is an integer and integers are closed under

addition and multiplication.
So, by definition of even, k(k -+ 3) is even.

Case 2: k is odd

These cases are exhaustive, so the claim that k(k + 3) is even must hold.
Since k was arbitrary, the claim holds for all k.



Problem 4 - Even Steven

(b) Write an English proof for this claim.

Let k be an arbitrary integer.
Case 1: k is even

Case 2: k is odd
By the definition of odd, k = 2j + 1 for some integer j.

So substituting for & into k(k+3):
k(k+3)=(2/+1)(2j+14+3)=(25+1)(27+4) =452 +10j + 4 =2(22 4+ 5 + 2) = 2(2j +1)(j + 2)

k(k + 3) = 2n, where n = (25 + 1)(j + 2) and n is an integer since j is an integer and integers are closed
under addition and multiplication.
So, by definition of even, k(k + 3) is even.

These cases are exhaustive, so the claim that k(k + 3) is even must hold.
Since k was arbitrary, the claim holds for all k.



Problem 5. Number Theory




Problem 5 - Number Theory

Let p be a prime number at least 3 and let x be an integer such that x?%p = 1.
a) Showthatif aninteger y satisfiesy = 1 (mod p), then y? = 1 (mod p).

b) Repeatpart (a), butdon’tuse any theorems fromthe Number Theory Reference
Sheet. That is, show the claim directly from the definitions.

c) From part (a), we can see that x%p can equal 1. Show that for any integer x, if
x%2 =1 (mod p), thenx = 1 (mod p) orx = —1 (mod p). Thatis, show that the
only value x%p can take otherthanlisp — 1.
Hint: Supposeyou have an x such that x? = 1 (mod p) and use the fact that
x2—=1=(x - D+ 1)
Hint: You may the following theoremwithout proof:if pis prime and p | (ab) then
plaorp|b.

Work on this problem with the people around you.



Problem 5 — Number Theory Let p be a prime number at least 3 and

let x be an integer such that x?%p =1

a) Showthatif anintegery satisfiesy = 1 (mod p), theny? = 1 (mod p).



Problem 5 — Number Theory Let p be a prime number at least 3 and

let x be an integer such that x?%p =1
a) Showthatif anintegery satisfiesy = 1 (mod p), theny? = 1 (mod p).

Claim in predicate logic: Vy[(y = 1 (mod p)) = (¥? = 1 (mod p))]



Problem 5 — Number Theory Let p be a prime number at least 3 and

let x be an integer such that x?%p = 1
a) Showthatif anintegery satisfiesy = 1 (mod p), theny? = 1 (mod p).

Claim in predicate logic: Vy[(y = 1 (mod p)) = (¥? = 1 (mod p))]
Let y be an arbitrary integer and supposey = 1 (mod p).

y? =1 (mod p).
Since y is arbitrary, the claim holds.



Problem 5 — Number Theory Let p be a prime number at least 3 and

let x be an integer such that x?%p = 1
a) Showthatif anintegery satisfiesy = 1 (mod p), theny? = 1 (mod p).
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congruences, so multiplying this congruence by itself we get y? = 12 (mod p).
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let x be an integer such that x?%p = 1
a) Showthatif anintegery satisfiesy = 1 (mod p), theny? = 1 (mod p).

Claim in predicate logic: Vy[(y = 1 (mod p)) = (¥? = 1 (mod p))]

Let y be an arbitrary integer and supposey = 1 (mod p). We can multiply
congruences, so multiplying this congruence by itself we get y? = 12 (mod p).
Simplifying, we have y? = 1(mod p)

Since y is arbitrary, the claim holds.



Problem 5 - Number Theory Let p be a prime number at least 3 and

let x be an integer such that x?%p =1

b) Repeat part (a), but don’t use any theorems from the Number Theory
Reference Sheet. That is, show the claim directly from the definitions.
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b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet.
That is, show the claim directly from the definitions.
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x? =1 (mod p).
Since x was arbitrary, the claim holds.
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let x be an integer such that x?%p =1

b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet.
That is, show the claim directly from the definitions.

Let x be an arbitrary integer and suppose x = 1 (mod p).

By the definition of Congruences, p | (x — 1). Therefore, by the definition of divides, there
exists an integer k such that pk = (x — 1).

x? =1 (mod p).
Since x was arbitrary, the claim holds.



Problem 5 — Number Theory Let p be a prime number at least 3 and

let x be an integer such that x?%p = 1

b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet.
That is, show the claim directly from the definitions.

Let x be an arbitrary integer and suppose x = 1 (mod p).

By the definition of Congruences, p | (x — 1). Therefore, by the definition of divides, there
exists an integer k such that pk = (x — 1).
By multiplying both sides of pk = (x = 1) by (x + 1), wehavepk(x + 1) = (x — 1)(x + 1).

x? =1 (mod p).
Since x was arbitrary, the claim holds.
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b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet.
That is, show the claim directly from the definitions.

Let x be an arbitrary integer and suppose x = 1 (mod p).

By the definition of Congruences, p | (x — 1). Therefore, by the definition of divides, there
exists an integer k such that pk = (x — 1).

By multiplying both sides of pk = (x = 1) by (x + 1), wehavepk(x + 1) = (x = 1)(x + 1).
Rearranging the equation, we have p(k(x + 1)) = (x — 1)(x + 1).

x? =1 (mod p).
Since x was arbitrary, the claim holds.
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b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet.
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Let x be an arbitrary integer and suppose x = 1 (mod p).

By the definition of Congruences, p | (x — 1). Therefore, by the definition of divides, there
exists an integer k such that pk = (x — 1).

By multiplying both sides of pk = (x — 1) by (x + 1), we havepk(x + 1) = (x = 1)(x + 1).
Rearranging the equation, we have p(k(x + 1)) = (x — 1)(x + 1).

Since (x — 1)(x + 1) = x%? — 1, by replacing (x — 1)(x + 1) with x? — 1, we have
plk(x+ 1) =x%-1

x? =1 (mod p).
Since x was arbitrary, the claim holds.
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b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet.
That is, show the claim directly from the definitions.

Let x be an arbitrary integer and suppose x = 1 (mod p).

By the definition of Congruences, p | (x — 1). Therefore, by the definition of divides, there
exists an integer k such that pk = (x — 1).

By multiplying both sides of pk = (x = 1) by (x + 1),wehavepk(x + 1) = (x = 1)(x + 1).
Rearranging the equation, we have p(k(x + 1)) = (x — 1)(x + 1).

Since (x — 1)(x + 1) = x* — 1, by replacing (x — 1)(x + 1) with x* — 1, we have
plk(x+ 1) =x*—-1

Note that since k and x are integers, k(x + 1) is also an integer. Therefore, by the definition of
divides, p | x? — 1.

...x% =1 (mod p).

Since x was arbitrary, the claim holds.
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b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet.
That is, show the claim directly from the definitions.

Let x be an arbitrary integer and suppose x = 1 (mod p).

By the definition of Congruences, p | (x — 1). Therefore, by the definition of divides, there
exists an integer k such that pk = (x — 1).

By multiplying both sides of pk = (x = 1) by (x + 1),wehavepk(x + 1) = (x = 1)(x + 1).
Rearranging the equation, we have p(k(x + 1)) = (x — 1)(x + 1).

Since (x — 1)(x + 1) = x* — 1, by replacing (x — 1)(x + 1) with x* — 1, we have
plk(x+ 1) =x*—-1

Note that since k and x are integers, k(x + 1) is also an integer. Therefore, by the definition of
divides, p | x? — 1.

Hence, by the definition of Congruences, x*> = 1 (mod p).

Since x was arbitrary, the claim holds.



Let p be a prime number at least 3 and

PrOblem 5 - Number Theory let x be an integer such that x?%p =1

C) From part (a), we can see that x%p can equal 1. Show that for any integer x, if x> = 1 (mod p),
then x = 1 (mod p) orx = —1 (mod p). That is, show that the only value x%p can take other

thanlisp — 1.
Hint: Suppose you have an x such that x? = 1 (mod p) and use the fact that

x2—1=(x - D + 1)
Hint: You may the following theorem without proof: if p is prime and p | (ab) thenp | a orp | b.
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Hint: Suppose you have an x such that x> = 1 (mod p) and use the fact that
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Since (x — 1)(x + 1) = x%? — 1, by replacing x* — 1 with (x — 1)(x + 1),we havep | (x — 1)(x + 1)
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Problem 5 — Number Theory Let p be a prime number at least 3 and

let x be an integer such that x2%p = 1

C) From part (a), we can see that x%p can equal 1. Show that for any integer x, if x> = 1 (mod p),
then x = 1 (mod p) orx = —1 (mod p). That is, show that the only value x%p can take other
thanlisp — 1.
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Since (x — 1)(x + 1) = x%? — 1, by replacing x* — 1 with (x — 1)(x + 1),we havep | (x — 1)(x + 1)
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Since x was arbitrary, the claim holds.



Problem 6: Induction




Problem 6 - Induction

Foranyn € N, define S, to be the sum of the squares of the first n positive integers, or
S, =1%+2%+ -+ n?
Provethatforalln € N, 5, = -n(n+1)(2n+1).

Work on this problem with the people around you.



Sp =12 4+2%+ -+ n?

Problem 6 - Induction
Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Let P(n) be “”. We show P (n) holds for (some) n by induction onn.

Base Case: P(b):
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > b.
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds for (some) n by the principle of induction.
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Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(b):
Inductive Hypothesis: Suppose P (k) holds foran arbitrary k > b
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.
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Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 6 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.
Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.

Inductive Hypothesis: Suppose P (k) holds foran arbitrary k > b
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.
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Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 6 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




Sp =12 4+2%+ -+ n?

Problem 6 - Induction 1
Provethatforalln € N, S, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k + 1)+ 1)(2(k + 1) + 1)

Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.
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Problem 6 - Induction 1
Provethatforalln € N, S, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k + 1)+ 1)(2(k + 1) + 1)

Sk+1 =

=(k+D((k+D+1DRK+1)+1)
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Problem 6 - Induction 1
Provethatforalln € N, S, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.
Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,

=(k+D((k+D+1DRK+1)+1)
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.
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Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 6 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.
Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)
Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
= 1%+ 22+ -+ k*) + (k+1)*

=(k+D((k+D+1DRK+1)+1)
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.
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Provethatforalln € N, S, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
= 1%+ 22+ -+ k*) + (k+1)*
=S, + (k + 1)? by definition of S,,

=(k+D((k+D+1D2K+1)+1)
Conclusion: Therefore, P(n) holds for all n € N by the principle of induction.
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Problem 6 - Induction 1
Provethatforalln € N, S, = -n(n+1)(2n+1).

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+D((k+D+1D2K+1)+1)
Conclusion: Therefore, P(n) holds for all n € N by the principle of induction.




S, =12 +2% + .-+ n?,

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 6 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

= (k+1DCkQRk+ 1)+ (k+ 1))

=(k+D((k+ D+ 12K +1)+1)
Conclusion: Therefore, P(n) holds for all n € N by the principle of induction.
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Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 6 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.
Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+1DCkQRk+ 1)+ (k+ 1))
=2(k+1)(kQ2k + 1) + 6(k + 1))

- ;.(.k +D(k+D+DEE+D +1)
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Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.
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Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 6 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+1DCkQRk+ 1)+ (k+ 1))
=2(k +1)(kQ2k + 1) + 6(k + 1))
= 2(k 4+ 1)(2k* + k + 6k + 6)

=k +D((k+D+1DR2K+1)+1)
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.
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Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 6 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+1DCkQRk+ 1)+ (k+ 1))
=2(k+ 1) (k(2k + 1) + 6(k + 1))
= 2(k 4+ 1)(2k* + k + 6k + 6)

= 2(k + 1)(2k* + 7k + 6)

Sl DK+ D+ DU+ D + 1)

6
Conclusion: Therefore, P(n) holds forall n € N by the principle of induction.



S, =12 +2% + .-+ n?,

Prove thatforalln € N, S,, = Zn(n+1)(2n+1).

Problem 6 - Induction

Let P(n) be “S,, = zn(n + 1)(2n + 1)”. We show P(n) holds foralln € N by induction on n.

Base Case: P(0): When n = 0, the sum of the squares of the first n positive integers is the sum of no
terms, so we have a sum of 0. Thus, S, = 0. Since 2(0)(0 + 1)(2 - 0 + 1), we know that P(0) is true.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > 0,i.e. S, = zk(k + 1)(2k + 1)
Inductive Step: Goal: Show P(k + 1): 541 = c(k + 1)((k+ 1)+ 1)(2(k + 1) + 1)

Ske1 =12+ 22+ -+ k? + (k + 1)? by definition of S,,
=(1%24+2°+ -+ k»)+ (k+1)°
=S, + (k + 1)? by definition of S,,
= Ye(k + 1) (2k + 1) + (k + 1)? by I.H.

=(k+1DCkQRk+ 1)+ (k+ 1))
=2(k+ 1) (k(2k + 1) + 6(k + 1))
= 2(k 4+ 1)(2k* + k + 6k + 6)
= 2(k + 1)(2k* + 7k + 6)
=2(k +1)(k + 2)(2k + 3)
=(k+D((k+D+1DRK+1)+1)
Conclusion: Therefore, P(n) holds for all n € N by the principle of induction.
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Problem 7 - Strong Induction

Robbieis planning to buy snacks for the members of his competitive roller-skating
troupe. However, his local grocery store sells snacks in packs of 5 and packs of 7.

Provethat Robbie can buy exactlyn snacks for all integersn > 24

Work on this problem with the people around you.
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Problem 7 - Strong Induction ;

Prove that Robbie can buy exactly n

Let P(n) be “”. snacks for all integers n=24

We show P (n) holds for all n > b,,;;,, by strong induction on n.
Base Cases:
Inductive Hypothesis: Suppose P(b,in) A -+ A P(k) hold for an arbitrary all k = b4

Inductive Step: Goal: Show P(k + 1):
Conclusion: Therefore, P(n) holds forall n = b,,;;;, by the principle of induction.
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PrOblem 7 Strong IndUCtlon Prove that Robbie can buy exactly n

snacks for all integers n=24
Let P(n) be “Robbie can buy exactly n snacks with packs of 5and 7”.

We show P (n) holds for all n = 24 by strong induction on n.
Base Cases:
Inductive Hypothesis: Suppose P(byin) A -+ A P(k) hold for an arbitrary all k = b,

Inductive Step: Goal: Show P(k + 1):
Conclusion: Therefore, P(n) holds for all n > 24 by the principle of induction.
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PrOblem 7 - Strong IndUCtlon Z"rove that Robbie can buy exactly n

snacks for all integers n=24
Let P(n) be “Robbie can buy exactly n snacks with packs of 5and 7”.
We show P (n) holds for all n = 24 by strong induction on n.
Base Cases:
Inductive Hypothesis: Suppose P(byin) A -+ A P(k) hold for an arbitrary all k = b,

Inductive Step: Goal: Show P(k + 1):
Conclusion: Therefore, P(n) holds for all n > 24 by the principle of induction.

How can we tell how many base cases we need?

The smallest number of snacks we can add at one time is 5.
This tells us we probably need 5 base cases, because then
the 6™ case can be reached by adding 5 to the minimum

base case
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Problem 7 - Strong Induction 7’

P'rove that Robbie can buy exactly n
snacks for all integers n=24

Let P(n) be “Robbie can buy exactly n snacks with packs of 5and 7”.

We show P (n) holds for all n = 24 by strong induction on n.

Base Cases: n = 24: 24 snacks can be bought with 2 packs of 7 and 2 packs of 5 snacks.
n = 25: 25 snacks can be bought with 5 packs of 5 snacks.

n = 26: 26 snacks can be bought with 3 packs of 7 and 1 pack of 5 snacks.

n = 27:27 snacks can be bought with 1 pack of 7 and 4 packs of 5 snacks.

n = 28: 28 snacks can be bought with 4 packs of 7 snacks.

Inductive Hypothesis: Suppose P(byin) A -+ A P(k) hold for an arbitrary all k = by
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds for all n = 24 by the principle of induction.
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Problem 7 - Strong Induction 7’

P'rove that Robbie can buy exactly n
snacks for all integers n=24

Let P(n) be “Robbie can buy exactly n snacks with packs of 5and 7”.

We show P (n) holds for all n = 24 by strong induction on n.

Base Cases: n = 24: 24 snacks can be bought with 2 packs of 7 and 2 packs of 5 snacks.

n = 25:25 snacks can be bought with 5 packs of 5 snacks.

n = 26: 26 snacks can be bought with 3 packs of 7 and 1 pack of 5 snacks.

n = 27:27 snacks can be bought with 1 pack of 7 and 4 packs of 5 snacks.

n = 28: 28 snacks can be bought with 4 packs of 7 snacks.

Inductive Hypothesis: Suppose P(24) A P(25) A --- A P(k) hold for an arbitrary all k > 28.
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds for all n = 24 by the principle of induction.
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Problem 7 - Strong Induction 7’

P'rove that Robbie can buy exactly n
snacks for all integers n=24

Let P(n) be “Robbie can buy exactly n snacks with packs of 5and 7”.

We show P (n) holds for all n = 24 by strong induction on n.

Base Cases: n = 24: 24 snacks can be bought with 2 packs of 7 and 2 packs of 5 snacks.

n = 25:25 snacks can be bought with 5 packs of 5 snacks.

n = 26: 26 snacks can be bought with 3 packs of 7 and 1 pack of 5 snacks.

n = 27:27 snacks can be bought with 1 pack of 7 and 4 packs of 5 snacks.

n = 28: 28 snacks can be bought with 4 packs of 7 snacks.

Inductive Hypothesis: Suppose P(24) A P(25) A --- A P(k) hold for an arbitrary all k > 28.
Inductive Step: Goal: Show P(k + 1): Robbie can buy exactly k + 1 snacks with packs of 5 and 7.

Conclusion: Therefore, P(n) holds for all n = 24 by the principle of induction.
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Problem 7 - Strong Induction 7’

P'rove that Robbie can buy exactly n
snacks for all integers n=24
Let P(n) be “Robbie can buy exactly n snacks with packs of 5and 7”.

We show P (n) holds for all n = 24 by strong induction on n.

Base Cases: n = 24: 24 snacks can be bought with 2 packs of 7 and 2 packs of 5 snacks.

n = 25:25 snacks can be bought with 5 packs of 5 snacks.

n = 26: 26 snacks can be bought with 3 packs of 7 and 1 pack of 5 snacks.

n = 27:27 snacks can be bought with 1 pack of 7 and 4 packs of 5 snacks.

n = 28: 28 snacks can be bought with 4 packs of 7 snacks.

Inductive Hypothesis: Suppose P(24) A P(25) A --- A P(k) hold for an arbitrary all k > 28.
Inductive Step: Goal: Show P(k + 1): Robbie can buy exactly k + 1 snacks with packs of 5 and 7.

We want to show that Robbie can buy exactly k + 1 snacks. By the inductive hypothesis, we
know that Robbie can buy exactly k — 4 snacks, so he can buy another pack of 5 to get exactly
k + 1 snacks.

Conclusion: Therefore, P(n) holds for all n = 24 by the principle of induction.
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Problem 8 - Wait, That Doesn't Add Up

Write a proof by contradiction for the following proposition: There exist no integers x and y such that 18z + 6y = 1.
In predicate logic this could be expressed as VzVy(18z + 6y # 1). HINT: Try negating this statement before writing
your proof.

Work on this problem with the people around you.



Problem 8 - Wait, That Doesn't Add Up

Write a proof by contradiction for the following proposition: There exist no integers x and y such that 18z + 6y = 1.
In predicate logic this could be expressed as VzVy(18z + 6y # 1). HINT: Try negating this statement before writing
your proof.

Assume, for the sake of contradiction, that there exists integers x and y such that 18z + 6y = 1.



Problem 8 - Wait, That Doesn't Add Up

Write a proof by contradiction for the following proposition: There exist no integers x and y such that 18z + 6y = 1.
In predicate logic this could be expressed as VzVy(18z + 6y # 1). HINT: Try negating this statement before writing
your proof.

Assume, for the sake of contradiction, that there exists integers x and y such that 18z + 6y = 1. This gives us:

18z 4+ 6y =1



Problem 8 - Wait, That Doesn't Add Up

Write a proof by contradiction for the following proposition: There exist no integers x and y such that 18z + 6y = 1.
In predicate logic this could be expressed as VzVy(18z + 6y # 1). HINT: Try negating this statement before writing
your proof.

Assume, for the sake of contradiction, that there exists integers x and y such that 18z + 6y = 1. This gives us:

18z 4+ 6y =1

Jz+y= % Dividing by 6

)



Problem 8 - Wait, That Doesn't Add Up

Write a proof by contradiction for the following proposition: There exist no integers x and y such that 18z + 6y = 1.
In predicate logic this could be expressed as VzVy(18z + 6y # 1). HINT: Try negating this statement before writing
your proof.

Assume, for the sake of contradiction, that there exists integers x and y such that 18z + 6y = 1. This gives us:

18z 4+ 6y =1

1 .

3r+y= 3 Dividing by 6
)

But wait, this is a contradiction! Integers are closed under multiplication and addition, and so 3z + y can’t be

equal to ;. This means there can be no integers x and y such that 18z + 6y = 1. Therefore, the original claim

holds via proof by contradiction.
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Problem 9 - How Many Elements?

9. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say oo.

(@) A={1,2,3,2)
® B={{}, {{}}, {{ 3 (B 3.4 )
© C=Ax (BU{T)

d D=w

(e) E={o}

0 F =Pz} Work on this problem with the people around you.
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9. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say oo.

(@ A=1{1,2,3,2}

3



Problem 9 - How Many Elements?

9. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say oo.

b) B={{}, {{}}, {}H {3 UL )

B={{}, {{}} {0} {0000 )
= {03 (O, {0 {0 )
= {2, {2})

So, there are two elements in B.



Problem 9 - How Many Elements?

9. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say oo.
(¢ C=AX(BU{T})

C ={1,2,3} x {2,{9},7} = {(a,b) | a € {1,2,3},b € {2,{2},7}}. It follows that there are 3 x 3 = 9
elements in C.



Problem 9 - How Many Elements?

9. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say oo.

(d D=g

0.



Problem 9 - How Many Elements?

9. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say oo.

(e) E={g}

1,



Problem 9 - How Many Elements?

9. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say oo.

0 F=P({2})

2! = 2. The elements are F = {@, {@}}.
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Problem 10 - Set = Set

Prove the following set identities. Write both a formal inference proof and an English proof.

(a) Let the universal set be I{. Prove AN B C A\B for any sets A, B.

(b) Prove that (AN B) xC C Ax (CUD,) for any sets A, B, C, D.

Work on this problem with the people around you.



Problem 10 - Set = Set

Prove the following set identities. Write both a formal inference proof and an English proof.

(a) Let the universal set be I{. Prove AN B C A\B for any sets A, B.

Let z be an arbitrary element and suppose that = € AN B. By definition of intersection, z € A and = € B,
so by definition of complement, x ¢ B. Then, by definition of set difference, x € A\B. Since z was
arbitrary, we can conclude that A N B C A\ B by definition of subset.



Problem 10 - Set = Set

Prove the following set identities. Write both a formal inference proof and an English proof.

(b) Prove that (AN B) x C C A x (CU D) for any sets A, B, C, D.

Let x be an arbitrary element of (A N B) x C. Then, by definition of Cartesian product, x must be of the
form (y,z) wherey € ANBand z € C. Sincey € ANB,y € A and y € B by definition of N; in particular,
all we care about is that y € A. Since z € (', by definition of U, we also have z € C'U D. Therefore since
y € Aand z € C'U D, by definition of Cartesian product we have z = (y,z) € A x (C U D).

Since x was an arbitrary element of (A N B) x C we have proved that (AN B) x C € A x (CU D) as
required.
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Problem 11 - Set Equality

Prove that AN (AU B) = A for any sets A, B.

Work on this problem with the people around you.



Problem 11 - Set Equality

Prove that AN (AU B) = A for any sets A, B.

Let x be an arbitrary member of AN (AU B). Then by definition of intersection, z € Aand z € AU B. So
certainly, x € A. Since z was arbitrary, AN (AU B) C A.

Now let y be an arbitrary member of A. Then y € A. So certainly y € A or y € B. Then by definition of
union, y € AU B. Since y € A and y € AU B, by definition of intersection, y € AN (AU B). Since y was
arbitrary, AC An(AU B).

Therefore AN (AU B) = A, by containment in both directions.



That's All, Folks!

Thanks for coming to section this week!
Any questions?




