CSE 311 Section MR

Midterm Review

Administrivia

Announcements & Reminders

- HW6
 - Was due Wednesday 11/6
 - Late due date Saturday 11/9
- Midterm is Coming Next Week!!!
 - Wednesday 11/13 @ 6-7:30 pm in PAA A102 and A118
 - If you cannot make it, please let us know ASAP and we will schedule you for a makeup

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- soy(x) is true iff x contains soy milk.
- whole(*x*) is true iff *x* contains whole milk.
- sugar(x) is true iff x contains sugar

- decaf(x) is true iff x is not caffeinated.
- vegan(x) is true iff x is vegan.
- RobbieLikes(x) is true iff Robbie likes the drink x.
- Translate each of the following statements into predicate logic. You may use quantifiers, the predicates above, and usual math connectors like = and \neq .
- a) Coffee drinks with whole milk are not vegan
- b) Robbie only likes one coffee drink, and that drink is not vegan
- c) There is a drink that has both sugar and soy milk.

a) Coffee drinks with whole milk are not vegan

- soy(x) is true iff x contains soy milk
- whole(x) is true iff x contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

a) Robbie only likes one coffee drink, and that drink is not vegan

a) There is a drink that has both sugar and soy milk.

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- soy(x) is true iff x contains soy milk.
- whole(*x*) is true iff *x* contains whole milk.
- sugar(x) is true iff x contains sugar

- decaf(x) is true iff x is not caffeinated.
- vegan(x) is true iff x is vegan.
- RobbieLikes(x) is true iff Robbie likes the drink x.

(a) Coffee drinks with whole milk are not vegan.

(d) Translate the contrapositive of part (a) and write a matching (natural) English sentence.

- soy(*x*) is true iff *x* contains soy milk
- whole(*x*) is true iff *x* contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

(a) Coffee drinks with whole milk are not vegan.

(d) Translate the contrapositive of part (a) and write a matching (natural) English sentence.

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- soy(x) is true iff x contains soy milk.
- whole(*x*) is true iff *x* contains whole milk.
- sugar(x) is true iff x contains sugar

- decaf(x) is true iff x is not caffeinated.
- vegan(x) is true iff x is vegan.
- RobbieLikes(x) is true iff Robbie likes the drink x.

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage of domain restriction.

 $\forall x ([\operatorname{decaf}(x) \land \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$

- soy(*x*) is true iff *x* contains soy milk
- whole(x) is true iff x contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

 $\forall x([\operatorname{decaf}(x) \land \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- soy(x) is true iff x contains soy milk.
- whole(*x*) is true iff *x* contains whole milk.
- sugar(x) is true iff x contains sugar

- decaf(x) is true iff x is not caffeinated.
- vegan(x) is true iff x is vegan.
- RobbieLikes(x) is true iff Robbie likes the drink x.

 $\forall x ([\operatorname{decaf}(x) \land \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$

Write the negation of part (e) in predicate logic and translate it into a (natural) English sentence. Take advantage of domain restriction.

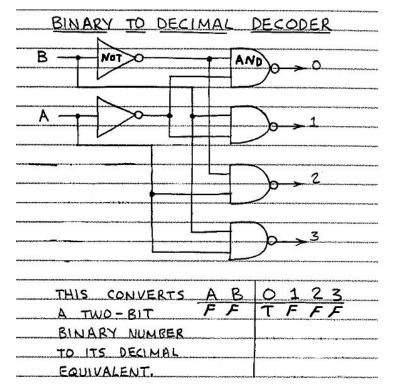
Negate:

 $\forall x([\operatorname{decaf}(x) \land \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))$

- soy(x) is true iff x contains soy milk
- whole(*x*) is true iff *x* contains whole milk
- sugar(x) is true iff x contains sugar
- decaf(x) is true iff x is not caffeinate
- vegan(x) is true iff x is vegan
- RobbieLikes(x) is true iff Robbie likes the drink x

Problem 2: Circuits and Normal Forms

Problem 2 – Circuits and Normal Forms

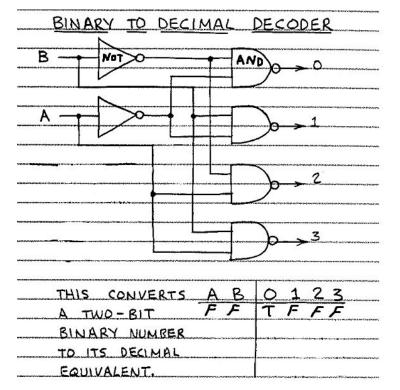


Here's a complex circuit.

(a) DNF for the output "2"?(b) CNF for the output "1"?(c) DNF for the outputs greater than "1"?

(d) How does adding an input affect the outputs?

Problem 2 – Circuits and Normal Forms



Some tips:

- Complete the truth table
- Focus on one output at a time
- Recall CNF/DNF structure
- Eliminate answers

Problem 3: Boolean Algebra

Problem 3 – Boolean Algebra

Consider the following Boolean expression:

 $(A + A' \cdot B) \cdot (A + B)$

(a) Simplify the given Boolean expression

(b) Identify whether the simplified expression is a tautology, contradiction, or neither

Problem 4: Even Steven

Problem 4 – Even Steven

Prove that for all integers k, k(k + 3) is even. Recall that $Even(x) := \exists k(x = 2k)$ and $Odd(x) := \exists k(x = 2k + 1)$

(a) Let your domain be integers. Write the predicate logic of this claim.

(b) Write an English proof for this claim.

Let p be a prime number at least 3 and let x be an integer such that $x^2\% p = 1$.

- a) Show that if an integer y satisfies $y \equiv 1 \pmod{p}$, then $y^2 \equiv 1 \pmod{p}$.
- b) Repeat part (a), but don't use any theorems from the Number Theory Reference Sheet. That is, show the claim directly from the definitions.
- c) From part (a), we can see that x% p can equal 1. Show that for any integer x, if $x^2 \equiv 1 \pmod{p}$, then $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$. That is, show that the only value x% p can take other than 1 is p 1. Hint: Suppose you have an x such that $x^2 \equiv 1 \pmod{p}$ and use the fact that $x^2 - 1 = (x - 1)(x + 1)$ Hint: You may the following theorem without proof: if p is prime and $p \mid (ab)$ then

 $p \mid a \text{ or } p \mid b.$

Let p be a prime number at least 3 and let x be an integer such that $x^2\% p = 1$

a) Show that if an integer y satisfies $y \equiv 1 \pmod{p}$, then $y^2 \equiv 1 \pmod{p}$.

Let p be a prime number at least 3 and let x be an integer such that $x^2\% p = 1$

b) Repeat part (a), but don't use any theorems from the Number Theory Reference Sheet. That is, show the claim directly from the definitions.

Let p be a prime number at least 3 and let x be an integer such that $x^2\% p = 1$

- c) From part (a), we can see that x%p can equal 1. Show that for any integer x, if $x^2 \equiv 1 \pmod{p}$, then $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$. That is, show that the only value x%p can take other than 1 is p 1.
 - Hint: Suppose you have an x such that $x^2 \equiv 1 \pmod{p}$ and use the fact that $x^2 1 = (x 1)(x + 1)$

Hint: You may the following theorem without proof: if p is prime and $p \mid (ab)$ then $p \mid a \text{ or } p \mid b$.

Problem 6: Induction

Problem 6 – Induction

For any $n \in \mathbb{N}$, define S_n to be the sum of the squares of the first n positive integers, or $S_n = 1^2 + 2^2 + \dots + n^2$.

Prove that for all $n \in \mathbb{N}$, $S_n = \frac{1}{6}n(n+1)(2n+1)$.

Problem 7: Strong Induction

Problem 7 – Strong Induction

Robbie is planning to buy snacks for the members of his competitive roller-skating troupe. However, his local grocery store sells snacks in packs of 5 and packs of 7.

Prove that Robbie can buy exactly n snacks for all integers $n \ge 24$

Problem 8: Wait, That Doesn't Add Up

Problem 8 - Wait, That Doesn't Add Up

Write a proof by contradiction for the following proposition: There exist no integers x and y such that 18x + 6y = 1. In predicate logic this could be expressed as $\forall x \forall y (18x + 6y \neq 1)$. HINT: Try negating this statement before writing your proof.

Problem 9: How Many Elements?

Problem 9 - How Many Elements?

9. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say ∞ . (a) $A = \{1, 2, 3, 2\}$

(b) $B = \{\{\}, \{\{\}\}, \{\{\}\}, \{\{\}\}, \{\}\}, \dots\}$

(c) $C = A \times (B \cup \{7\})$

(d) $D = \emptyset$

(e) $E = \{\emptyset\}$

(f) $F = \mathcal{P}(\{\emptyset\})$ Work on this problem with the people around you.

Problem 10: Set = Set

Problem 10 - Set = Set

Prove the following set identities. Write both a formal inference proof and an English proof.

(a) Let the universal set be \mathcal{U} . Prove $A \cap \overline{B} \subseteq A \setminus B$ for any sets A, B.

(b) Prove that $(A \cap B) \times C \subseteq A \times (C \cup D)$ for any sets A, B, C, D.

Problem 11: Set Equality

Problem 11 - Set Equality

Prove that $A \cap (A \cup B) = A$ for any sets A, B.

That's All, Folks!

Thanks for coming to section this week! Any questions?