
Section 10: Solutions

1. Irregularity

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.
Solution:

Let L = {0n1n0n : n ≥ 0}. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L.
Consider S = {0n1n : n ≥ 0}. Since S contains infinitely many strings andD has a finite number of states,
two strings in S must end up in the same state. Say these strings are 0i1i and 0j1j for some i, j ≥ 0 such
that i 6= j. Append the string 0i to both of these strings. The two resulting strings are:

a = 0i1i0i Note that a ∈ L.

b = 0j1j0i Note that b 6∈ L, since i 6= j.

Since a and b end up in the same state, but a ∈ L and b 6∈ L, that state must be both an accept and
reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not
regular.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.
Solution:

Let L = {0n(12)m : n ≥ m ≥ 0}. Let D be an arbitrary DFA, and suppose for contradiction that D
accepts L. Consider S = {0n : n ≥ 0}. Since S contains infinitely many strings and D has a finite number
of states, two strings in S must end up in the same state. Say these strings are 0i and 0j for some i, j ≥ 0
such that i > j. Append the string (12)i to both of these strings. The two resulting strings are:

a = 0i(12)i Note that a ∈ L.

b = 0j(12)i Note that b 6∈ L, since i > j.

Since a and b end up in the same state, but a ∈ L and b 6∈ L, that state must be both an accept and
reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not
regular.

2. Cardinality

(a) You are a pirate. You begin in a square on a 2D grid which is infinite in all directions. In other words, wherever
you are, you may move up, down, left, or right. Some single square on the infinite grid has treasure on it.
Find a way to ensure you find the treasure in finitely many moves.
Solution:

Explore the square you are currently on. Explore the unexplored perimeter of the explored region until
you find the treasure (your path will look a bit like a spiral).

(b) Prove that {3x : x ∈ N} is countable.
Solution:
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We can enumerate the set as follows:

f(0) = 0

f(1) = 3

f(2) = 6

f(i) = 3i

Since every natural number appears on the left, and every number in S appears on the right, this enumer-
ation spans both sets, so S is countable.

(c) Prove that the set of irrational numbers is uncountable.
Hint: Use the fact that the rationals are countable and that the reals are uncountable.
Solution:

We first prove that the union of two countable sets is countable. Consider two arbitrary countable sets C1

and C2. We can enumerate C1 ∪C2 by mapping even natural numbers to C1 and odd natural numbers to
C2.
Now, assume that the set of irrationals is countable. Then the reals would be countable, since the reals
are the union of the irrationals (countable by assumption) and the rationals (countable). However, we
have already shown that the reals are uncountable, which is a contradiction. Therefore, our assumption
that the set of irrationals is countable is false, and the irrationals must be uncountable.

(d) Prove that P(N) is uncountable.
Solution:

Assume for the sake of contradiction that P(N) is countable.
This means we can define an enumeration of elements Si in P.
Let si be the binary set representation of Si in N. For example, for the set 0, 1, 2, the binary set represen-
tation would be 111000 . . .
We then construct a new subset X ⊂ N such that x[i] = si[i] (that is, x[i] is 1 if si[i] is 0, and x[i] is 0
otherwise).
Note thatX is not any of Si, since it differs from Si on the ith natural number. However,X still represents
a valid subset of the natural numbers, which means our enumeration is incomplete, which is a contradic-
tion. Since the above proof works for any listing of P(N), no listing can be created for P(N), and therefore
P(N) is uncountable.

3. Countable Unions

(a) Show that N× N is countable.

Hint: How did we show the rationals were countable?

Solution:

We use dovetailing to create a sequence of elements of N× N that includes the entirety of N× N.

For a fixed integer k ≥ 2, consider subset Sk of N×N consisting of the elements (a, b) such that a+ b = k.
There can be at most k − 1 such elements because for each value of a = 1, 2, . . . , k − 1, there can only be
one possible value for b, namely k − a. Thus, if we create a sequence consisting of all the elements of S2,
then S3, then S4, etc. because each set is of finite size, any pair (a, b) ∈ N× N will eventually show up in
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this sequence in Sa+b.

Thus, because we can enumerate the elements of N× N, it must be countable.

(b) Show that the countable union of countable sets is countable. That is, given a collection of sets S1, S2, S2, . . .
such that Si is countable for all i ∈ N, show that

S = S1 ∪ S2 ∪ · · · = {x : x ∈ Si for some i}

is countable.

Hint: Find a way labeling the elements and see if you can apply the previous part to construct an onto function
from N to S.

Solution:

Because each Si is countable, the elements can be enumerated. Let the elements of Si be ai,1, ai,2, ai,3, . . ..
Next, because N× N is countable, there exists an onto function f : N → N× N. Then define the function
g : N → S as follows. For each n ∈ N, let (in, jn) = f(n). The define g(n) to be ain,jn .

I claim g is onto. Indeed, let ai,j be an arbitrary element of S. Because f is onto, there exists an n such
that f(n) = (i, j). Then g(n) = ai,j . This shows g is onto and thus S is countable.

4. Uncomputability

(a) Let Σ = {0, 1}. Prove that the set of palindromes is decidable.
Solution:

We can implement the function that takes a string as input and reverses that string, using the recursive
definition of string reverse given in class. So on input x we run that reversing program to create the string
y = xR. Then we compare x against y character by character and output yes iff we find that x = y.

(b) Prove that the set {(CODE(R), x, y) : R is a program and R(x) 6= R(y)} is undecidable where R(x) is the
output string that R produces on input x if R halts and we write R(x) =↑ if R runs forever.
Solution:

Let S be the set {(CODE(R), x, y) : R is a program and R(x) 6= R(y)}. Assume for the sake of contradic-
tion that S is decidable. Then there exists some program Q(String input, String x, String y) which
returns true iff (CODE(R), x, y) ∈ S.

Let P() be some arbitrary program. We will show that we can use Q to determine if P halts.

We first write a program I(String input) that incorporates the code of P:

String I(String input) {

if (input.equals(”kittens”)) {

// Run forever

while (true) {

}

} else {

// Execute P

<Code of P>

}

}
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Note that this program will always run forever when the input is “kittens” OR P runs forever, but will
otherwise return whatever P returns.
Now, we can write DOESHHALT():

boolean DOESHHALT() {

return Q(CODE(I),”kittens”,”bunnies”);

}

If Q(CODE(I),”kittens”,”bunnies”) returns true, then I(”kittens”) 6= I(”bunnies”), so P does not run
forever, so P halts.

If Q(CODE(I),”kittens”,”bunnies”) returns false, then I(”kittens”)= I(”bunnies”), so P runs forever,
so P does not halt.

Since P was arbitrary, we can construct a program using Q() like DOESHHALT() for any program, which
allows us to decide the halting set. Since we can use Q to decide the halting set, but the halting set is
undecidable, Q cannot exist.
Since Q was an arbitrary function that decides S, no function that decides S can exist, and therefore S is
undecidable.

(a) Given a CFG, it is impossible to determine that it defines a regular language. (T/F)
Solution:

True. Determining whether a CFG defines a regular language is undecidable.

(b) All uncountable sets have the same cardinality as the real numbers. (T/F)
Solution:

False, taking the power set of any set will always result in a set with greater cardinality.

(c) The set of all valid python programs has the same cardinality of the set of integers.(T/F)
Solution:

True. Any program will be a finite length string of characters over some finite alphabet. For any finite set
X, the set X∗ of all finite length strings over X is countable
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5. Final Review: Translations

Translate the following sentences into logical notation if the English statement is given or to an English statement
if the logical statement is given, taking into account the domain restriction.

Let the domain of discourse be students and courses.

Use predicates Student, Course, CseCourse to do the domain restriction.

You can use Taking(x, y) which is true if and only if x is taking y. You can also use RobbieTeaches(x) if and only if
Robbie teaches x and ContainsTheory(x) if and only if x contains theory.

Find the contrapositive and contradiction of the logical predicate for questions (a) - (c).

(a) Every student is taking some course.

Solution:

Translation: ∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])
Contrapositive: ∀x∃y((¬ Course(y)∨¬ Taking(x, y)) → ¬ Student(x))
Contradiction: ∃x∀y(Student(x)∧(¬ Course(y)∨¬ Taking(x, y)))

(b) There is a student that is not taking any cse course.

Solution:

Translation: ∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))]
Contrapositive: No contrapositive
Contradiction: ∀x∃y [¬ Student(x) ∨ (CseCourse(y) ∧ Taking(x, y))]

(c) Some student has taken only one cse course.

Solution:

Translation: ∃x∃y[Student(x)∧CseCourse(y)∧Taking(x, y)∧∀z((CseCourse(z)∧Taking(x, z)) → y = z))]
Contrapositive: No contrapositive
Contradiction:
∀x∀y [¬ Student(x) ∨ ¬ CseCourse(y) ∨ ¬ Taking(x, y) ∨ ∃z (CseCourse(z) ∧ Taking(x, z) ∧ y 6= z)]

(d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

Solution:

Every course taught by Robbie contains theory.

(e) ∃x CseCourse(x)∧RobbieTeaches(x)∧ContainsTheory(x)∧∀y((CseCourse(y)∧RobbieTeaches(y)) → x = y)

Solution:

There is only one cse course that Robbie teaches and that course contains theory.
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6. Review: Proof Skeletons Setup

In this problem, we’ll review how to set up proof by contradiction, contrapositive, and direct proof.

(a) Prove by contradiction: For all real numbers x, y, if x 6= y, x > 0, y > 0, then x
y + y

x > 2.

(i) How would you start your proof by contradiction? Remember to introduce all variables needed and all
starting assumptions.

Solution:

Recall that contradiction assumes the negation of the statement is true, then shows that this leads to
a contradiction.

Our premise is a universal for all statement, thus the negation is an existential there exists statement.
As we bring the negation in, we do not adjust the definitions of x, y, but we do negate the conclusion:
> becomes ≤.

Suppose, for the sake of contradiction, there exist some real numbers x, y, x 6= y, x > 0, y > 0 and
x
y + y

x ≤ 2.

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Solution:

But, this is a contradiction, because ...

The target is to show there is a contradiction based on the negated claim.

(b) Prove by contrapositive: every multiple of 3 can be written as a sum of three consecutive integers.

(i) How would you start your proof by contrapositive? Remember to introduce all variables needed and all
starting assumptions.

Solution:

The original statement resembled, for some integer a, if a is a multiple of 3 then a can be expressed
as the sum of three consecutive integers (b) + (b+ 1) + (b+ 2).

The contrapositive negates the statement, which reverses the implication and negates both sides: If
a can NOT be expressed as the sum of three consecutive integers (b)+ (b+1)+(b+2), then a is NOT
a multiple of three.

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Solution:

Since our three consecutive integers b, b+ 1, b+ 2 were arbitrary, we know a can NOT be expressed
as the sum of three consecutive integers (b) + (b+ 1) + (b+ 2), and therefore a is NOT a multiple of
three.

(c) Prove with direct proof: n2 − 3 is even if n is odd, for some integer n.

(i) How would you start your direct proof? Remember to introduce all variables needed and all starting
assumptions.
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Solution:

The hypothesis, the premise of our direct proof implication, is that n is odd.

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Solution:

The conclusion of our direct proof is that therefore, n2 − 3 is even when n is odd.

7. Review: Set Theory

Suppose that A ⊆ B. Prove that P(A) ⊆ P(B). Solution:

Suppose A ⊆ B. Let X ∈ P(A) be an arbitrary element. Then by definition of powerset, X ⊆ A. Let y ∈ X
be arbitrary. Then since X ⊆ A, by definition of subset, y ∈ A. Since A ⊆ B, by definition of subset again,
y ∈ B. Since y was arbitrary in X, by definition of subset once more, X ⊆ B. Then by definition of powerset,
X ∈ P(B). Since X was arbitrary in P (A), we have shown P(A) ⊆ P (B).

8. Review: Functions

Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of elements that f sends C to. In other
words, f(C) = {f(c) : c ∈ C}.

Let A,B be subsets of X. Prove that f(A ∩B) ⊆ f(A) ∩ f(B). Solution:
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Let y ∈ f(A ∩B) be arbitrary. Then there exists some element x ∈ A ∩B such that f(x) = y. Then by the
definition of intersection, x ∈ A and x ∈ B. Then f(x) ∈ f(A) and f(x) ∈ f(B). Thus y ∈ f(A) and y ∈ f(B).
By definition of intersection, y ∈ f(A) ∩ f(B). Since y was arbitrary, f(A ∩B) ⊆ f(A) ∩ f(B).

9. Review: Induction

(a) A Husky Tree is a tree built by the following definition:

Basis: A single gold node is a Husky Tree.

Recursive Rules:

1. Let T1, T2 be two Husky Trees, both with root nodes colored gold. Make a new purple root node and
attach the roots of T1, T2 to the new node to make a new Husky Tree.

2. Let T1, T2 be two Husky Trees, both with root nodes colored purple. Make a new purple root node and
attach the roots of T1, T2 to the new node to make a new Husky Tree.

3. Let T1, T2 be two Husky Trees, one with a purple root, the other with a gold root. Make a new gold root
node, and attatch the roots of T1, T2 to the new node to make a new Husky Tree.

Use structural induction to show that for every Husky Tree: if it has a purple root, then it has an even number
of leaves and if it has a gold root, then it has an odd number of leaves.

Solution:

Let P (T ) be “if T has a purple root, then it has an even number of leaves and if T has a gold root, then it
has an odd number of leaves.”

We show P (T ) holds for all Husky Trees T by structural induction.

Base Case: Let T be a Husky Tree made from the basis step. By the definition of Husky Tree, T must be
a single gold node. That node is also a leaf node (since it has no children) so there are an odd number
(specifically, 1) of leaves, as required for a gold root node.

Inductive Hypothesis: Let T1, T2 be arbitrary Husky Trees, and suppose P (T1) and P (T2).

Inductive Step: We will have separate cases for each possible rule.

Rule 1:
Suppose T1 and T2 both have gold roots. By the recursive rule, T has a purple root. By inductive hypothesis
on T1, since T1’s root is gold, it has an odd number of leaves. Similarly by IH, T2 has an odd number of
leaves. T ’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T is the sum of two
odd numbers, which is even. Thus T has an even number of leaves, as is required for a purple root. Thus
P (T ) holds.

Rule 2:
Suppose T1 and T2 both have purple roots. By the recursive rule, T has a purple root. By inductive
hypothesis on T1, since T1’s root is purple, it has an even number of leaves. Similarly by IH, T2 has an
even number of leaves. T ’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T
is the sum of two even numbers, which is even. Thus T has an even number of leaves, as is required for a
purple root. Thus P (T ) holds.

Rule 3:
Suppose T1 and T2 have opposite colored roots. Let T1 be the one with a gold root, and T2 the one with
the purple root. By the recursive rule, T has a gold root. By inductive hypothesis on T1, since T1’s root
is gold, it has an odd number of leaves. Similarly, by IH, T2 has an even number of leaves since it has a
purple root. T ’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in T is the sum of
an odd number and an even number, which is odd. Thus T has an odd number of leaves, as is required
for a gold root. Thus P (T ) holds.
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By the principle of induction, we have that for every Husky Tree, T : P (T ) holds.

(b) Use induction to prove that for every positive integer n,

1 + 5 + 9 + · · ·+ (4n− 3) = n(2n− 1)

Solution:

For n ∈ Z+ let P (n) be “1+5+9+ · · ·+(4n− 3) = n(2n− 1).” We show P (n) for all n ∈ Z+ by induction
on n.

Base Case: We have 1 = 1(1) = 1(2− 1) which is P (1) so the base case holds.

Inductive Hypothesis: Suppose P (k) holds for some arbitrary integer k ≥ 1.

Inductive Step: Goal: Show 1 + 5 + 9 + · · ·+ (4(k + 1)− 3) = (k + 1)(2(k + 1)− 1) .

We have:

1 + 5 + 9 + · · ·+ (4(k + 1)− 3) = 1 + 5 + 9 + · · ·+ (4k − 3) + (4(k + 1)− 3)

= k(2k − 1) + (4(k + 1)− 3) [Inductive Hypothesis]

= k(2k − 1) + (4k + 1)

= 2k2 + 3k + 1

= (k + 1)(2k + 1) [Factor]

= (k + 1)(2(k + 1)− 1)

This proves P (k + 1).

Conclusion: P (n) holds for all n ∈ Z+ by the principle of induction.

10. Review: Languages

(a) Construct a regular expression that represents binary strings where no occurrence of 11 is followed by a 0.

Solution:
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(0∗(10)∗)∗1∗

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0} Solution:

S → 1S4 | T

T → 2T3 | ε

(c) Construct a DFA that recognizes the language of all binary strings which, when interpreted as a binary number,
are divisible by 3. e.g. 11 is 3 in base-10, so should be accepted while 111 is 7 in base-10, so should be rejected.
The first bit processed will be the most-significant bit.
Hint: you need to keep track of the remainder %3. What happens to a binary number when you add a 0 at
the end? A 1? It’s a lot like a shift operation... Solution:

q0start q1 q2

0

1

1

0

0

1

(d) Construct a DFA that recognizes the language of all binary strings with an even number of 0’s and each 0 is
(immediately) followed by at least one 1. Solution:
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q0start q1

q2 q3

q4

1

0

1

0

0

1
0

1

0, 1

q0: even number of 0’s, with final 0 followed by at least one 1

q1: odd number of 0’s, with final 0 not yet followed by at least one 1

q2: odd number of 0’s, with final 0 followed by at least one 1

q3: even number of 0’s, with final 0 not yet followed by at least one 1

q4: garbage state where at least one 0 is not followed by at least one 1

11. Review: Uncountability

Let S be the set of all real numbers in [0, 1) that only have 0s and 1s in their decimal representation. Prove that S
is uncountably infinite.

Solution:

Suppose for the sake of contradiction that S is countable. Then there exists a surjection f : N → S. So for each
natural number i, we have some decimal sequence of 0s and 1s that i maps to.

We now construct an element x. We start x with 0. (a zero and decimal point). Then for all i ∈ N, let the ith
digit after the decimal point be 1 if f(i) = 0, and 0 if f(i) = 1.

Note that by our construction, for any i ∈ N , f(i) differs from x on the i-th digit after the decimal point.
Furthermore by our construction, x contains only 0s and 1s in its decimal expansion and x ∈ [0, 1), so x ∈ S.
Since x ∈ S but is not in the range of f , f is not surjective. This is a contradiction. Therefore S is uncountable.
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