
CSE 311 Section 10

Final Review



Administrivia



Announcements & Reminders
● HW7 Regrade Requests

○ Grades out!
○ Submit a regrade request if something was graded incorrectly

● HW8
○ Due yesterday
○ Late due date 12/7

● Final Exam
○ Monday 12/9 @ 12:30pm-2:20 @ KNE 210/220
○ Fill out Form for Conflict Exam



Irregularity



A note for your final…
You WILL have a question on the final exam where you will 
have a choice between either proving a language is 
irregular OR proving a set is uncountable.

For section today, we will go over how to prove a language is 
irregular. There is also a problem in the handout on proving a 
set is uncountable you can review if you prefer to prepare for 
that question. You should pick whichever you think is easier 
for you, and make sure you are prepared to do it on the final 
exam!



Irregularity Template
Claim: L is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L is regular. Then there is a DFA 𝑀 such 
that 𝑀 accepts exactly L. 

Let 𝑆 = [TODO] (𝑆 is an infinite set of strings)
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO] (We don’t get to choose 𝑥, 𝑦, but we can describe them 
based on that set 𝑆 we just defined) 

Consider the string 𝑧 = [TODO] (We do get to choose 𝑧 depending on 𝑥, 𝑦)

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO], so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO], so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.



Irregularity Example from Lecture
Claim: {0𝑘1𝑘 : 𝑘 ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0𝑘1𝑘 : 𝑘 ≥ 0} is regular. Then there is a 
DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0𝑘 : 𝑘 ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for 
some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 1a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎1𝑎 , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b1𝑎 , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only 
one of an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction! 

Therefore, L is an irregular language.



Problem 1 – Irregularity
a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.

b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Work on this problem with the people around you.



Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there 
is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(a)   Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.



Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there 
is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(a)   Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.



Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there 
is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b 
for some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(a)   Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.



Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there 
is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b 
for some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 0a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(a)   Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.



Problem 1 – Irregularity
Claim: {0n1n0n : n ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n1n0n : n ≥ 0} is regular. Then there 
is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n1n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎1𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏1b 
for some integer 𝑏 ≥ 0, with 𝑎 ≠ 𝑏.

Consider the string 𝑧 = 0a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎1𝑎0𝑎 , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b1b0𝑎 , so 𝑦𝑧 ∉ L. Since 𝑞 is can be 
only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction! 

Therefore, L is an irregular language.

(a)   Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is not regular.



Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then 
there is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO] .

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(b)   Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not 
regular.



Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then 
there is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO]

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(b)   Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not 
regular.



Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then 
there is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for 
some integer 𝑏 ≥ 0. Assume without loss of generality that 𝑎 > 𝑏. (Or go by cases).

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(b)   Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not 
regular.



Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then 
there is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for 
some integer 𝑏 ≥ 0, Assume without loss of generality that 𝑎 > 𝑏. (Or go by cases).

Consider the string 𝑧 = (12)a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(b)   Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not 
regular.



Problem 1 – Irregularity
Claim: {0n(12)m : n ≥ m ≥ 0} is an irregular language.  

Proof: Suppose, for the sake of contradiction, that L = {0n(12)m : n ≥ m ≥ 0} is regular. Then 
there is a DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = {0n : n ≥ 0}
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. Since both are in 𝑆, 𝑥 = 0𝑎 for some integer 𝑎 ≥ 0, and 𝑦 = 0𝑏 for 
some integer 𝑏 ≥ 0. Assume without loss of generality that 𝑎 > 𝑏. (Or go by cases).

Consider the string 𝑧 = (12)a .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same 
state 𝑞 in 𝑀. Observe that 𝑥𝑧 = 0𝑎(12)a , so 𝑥𝑧 ∈ L but 𝑦𝑧 = 0b(12)a , so 𝑦𝑧 ∉ L. Since 𝑞 is can 
be only one of an accept or reject state, 𝑀 does not actually recognize L. That’s a 
contradiction! 

Therefore, L is an irregular language.

(b)   Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not 
regular.



Problem 11– Review: Uncountability
Let S be the set of all real numbers in [0, 1) that only have 0s and 1s in their 
decimal representation. Prove that S is uncountably infinite.



Problem 11– Review: Uncountability
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Problem 11– Review: Uncountability
Let S be the set of all real numbers in [0, 1) that only have 0s and 1s in their 
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Problem 11– Review: Uncountability
Let S be the set of all real numbers in [0, 1) that only have 0s and 1s in their 
decimal representation. Prove that S is uncountably infinite.



Final Review



Problem 5 – Review: Translations
Translate the following sentences into logical notation if the English statement is given or to an 
English statement if the logical statement is given, taking into account the domain restriction. Let 
the domain of discourse be students and courses. Use predicates Student, Course, CseCourse 
to do the domain restriction. You can use Taking(x, y) which is true if and only if x is taking y. 
You can also use RobbieTeaches(x) if and only if Robbie teaches x and ContainsTheory(x) 
if and only if x contains theory. Find the contrapositive and contradiction for questions (a) - (c).

(a) Every student is taking some course.

(b) There is a student that is not taking every cse course.

(c) Some student is taking only one cse course.

(d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)] 

(e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ 
∀y((CseCourse(y) ∧ RobbieTeaches(y)) → x = y)  

Work on this problem with the people around you.



Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking any cse course.

c) Some student is taking only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ 
RobbieTeaches(y)) → x = y)



a) Every student is taking some course.

Translation:

Problem 5 – Review: Translations

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)]) 



a) Every student is taking some course.

Translation:

Contrapositive:

Problem 5 – Review: Translations

∀x∃y((ㄱCourse(y) ∨ ㄱ Taking(x, y)) → ㄱStudent(x)) 

Student(x) → [Course(y) ∧ Taking(x, y)]
Consider the implication

Take the contrapositive: P → Q is ㄱQ → ㄱP 

ㄱ(Course(y) ∧ Taking(x, y)) → ㄱStudent(x) 

Apply DeMorgan’s

(ㄱCourse(y) ∨ ㄱTaking(x, y)) → ㄱStudent(x) 

Apply Quantifiers
∀x∃y((ㄱCourse(y) ∨ ㄱ Taking(x, y)) → ㄱStudent(x)) 

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)]) 



a) Every student is taking some course.

Translation:
Contrapositive:

Contradiction:

Problem 5 – Review: Translations

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)]) 
∀x∃y((ㄱCourse(y) ∨ ㄱ Taking(x, y)) → ㄱStudent(x)) 

ㄱ∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])
Negate the statement

Apply negation to quantifiers

∃x∀y(ㄱ(Student(x) → [Course(y) ∧ Taking(x, y)]))

Apply the law of implication: A → B ☰ ㄱA ∨ B

∃x∀y(ㄱ(ㄱStudent(x) ∨ [Course(y) ∧ Taking(x, y)]))

Negate the statement & apply DeMorgan’s law
∃x∀y(ㄱStudent(x) ∧ [ㄱCourse(y) ∨ ㄱTaking(x, y)])

∃x∀y(ㄱStudent(x) ∧ [ㄱCourse(y) ∨ ㄱTaking(x, y)])



a) Every student is taking some course.

Translation:
Contrapositive:
Contradiction:

Problem 5 – Review: Translations

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)]) 
∀x∃y((ㄱCourse(y) ∨ ㄱ Taking(x, y)) → ㄱStudent(x)) 

∃x∀y(ㄱStudent(x) ∧ [ㄱCourse(y) ∨ ㄱTaking(x, y)])



Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking any cse course.

c) Some student is taking only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ 
RobbieTeaches(y)) → x = y)



b) There is a student that is not taking any cse course.

Translation:

Problem 5 – Review: Translations

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))] 



b) There is a student that is not taking any cse course.

Translation:

Contrapositive:

Problem 5 – Review: Translations

No contrapositive

You can only meaningfully apply contrapositives to implications.

There is no implication on our logical predicate.

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))] 



b) There is a student that is not taking any cse course.

Translation:
Contrapositive:

Contradiction

Problem 5 – Review: Translations

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))] 
No contrapositive

¬ ∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))] 
Negate the statement

Apply negation to quantifiers

∀x∃y¬[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))] 

Apply the law of implication: A → B ☰ ㄱA ∨ B

∀x∃y ¬[Student(x) ∧ (¬CseCourse(y) ∨ ¬ Taking(x, y))] 

Negate the statement & apply DeMorgan’s law
∀x∃y ¬Student(x) ∨ (CseCourse(y) ∧ Taking(x, y)) 

∀x∃y(¬ Student(x) ∨ [CseCourse(y) ∧Taking(x, y)])



b) There is a student that is not taking any cse course.

Translation:
Contrapositive:
Contradiction:

Problem 5 – Review: Translations

∃x∀y[Student(x) ∧ (CseCourse(y) → ¬ Taking(x, y))] 
No contrapositive
∀x∃y(¬ Student(x) ∨ [CseCourse(y) ∧Taking(x, y)])



Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking any cse course.

c) Some student is taking only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ 
RobbieTeaches(y)) → x = y)



c) Some student is taking only one cse course.

Translation:

Problem 5 – Review: Translations

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]



c) Some student is taking only one cse course.

Translation:

Contrapositive:

Problem 5 – Review: Translations

No contrapositive

You can only meaningfully apply contrapositives to implications.

There is no implication on our logical predicate.

∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]



c) Some student is taking only one cse course.

Translation:
Contrapositive:

Contradiction:

¬ ∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = 
z))]

Negate the statement

Apply negation to quantifiers
∀x∀y ¬[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = 
z))]

Apply negation & DeMorgan’s law
∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ¬(∀z((CseCourse(z) ∧ Taking(x, z)) 
→ 
y = z)))]

∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ∃z(CseCourse(z) ∧ Taking(x, z)) ∧ 
(y ≠ z))]

Problem 5 – Review: Translations

No contrapositive
∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]



c) Some student is taking only one cse course.

Translation:
Contrapositive:

Contradiction:

Negate the quantifier for z
∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ∃z(¬((CseCourse(z) ∧ Taking(x, z)) 
→ 
y = z))]

∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ¬(∀z((CseCourse(z) ∧ Taking(x, z)) 
→ 
y = z)))]

∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ∃z(CseCourse(z) ∧ Taking(x, z)) ∧ 
(y ≠ z))]

Problem 5 – Review: Translations

No contrapositive
∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

Apply law of implication: A → B ☰ ㄱA ∨ B
∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ∃z(¬(¬(CseCourse(z) ∧ Taking(x, z)) 
∨ 
(y = z))]



c) Some student is taking only one cse course.

Translation:
Contrapositive:

Contradiction:

∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ∃z(¬(¬(CseCourse(z) ∧ Taking(x, z)) 
∨ 
(y = z))]

Apply negation & DeMorgan’s law

∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ∃z(CseCourse(z) ∧ Taking(x, z)) ∧ 
(y ≠ z))]

Problem 5 – Review: Translations

No contrapositive
∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]

∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ∃z(CseCourse(z) ∧ Taking(x, z)) ∧ 
(y ≠ z))]



c) Some student is taking only one cse course.

Translation:
Contrapositive:
Contradiction: ∀x∀y [¬Student(x) ∨ ¬CseCourse(y) ∨ ¬Taking(x, y) ∨ ∃z(CseCourse(z) ∧ Taking(x, z)) ∧ 

(y ≠ z))]

Problem 5 – Review: Translations

No contrapositive
∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z))]



Problem 5 – Review: Translations
a) Every student is taking some course.

b) There is a student that is not taking any cse course.

c) Some student is taking only one cse course.

d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ 
RobbieTeaches(y)) → x = y)
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d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ 
RobbieTeaches(y)) → x = y)

Every course taught by Robbie contains theory.



Problem 5 – Review: Translations
d) ∀x[(Course(x) ∧ RobbieTeaches(x)) → ContainsTheory(x)]

e) ∃x CseCourse(x) ∧ RobbieTeaches(x) ∧ ContainsTheory(x) ∧ ∀y((CseCourse(y) ∧ 
RobbieTeaches(y)) → x = y)

Every course taught by Robbie contains theory.

There is only one cse course that Robbie teaches and that course contains theory. 



Problem 6 – Review: Proof Skeleton Setup
For each of the following, write the beginning and target of your proof (not the 
middle reasoning)

a) Contradiction

b) Contrapositive

c) Direct Proof

Work on this problem with the people around you.
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Problem 6 – Review: Proof Skeleton Setup
For each of the following, write the beginning and target of your proof (not the 
middle reasoning)

Direct Proof

Work on this problem with the people around you.



Problem 7 – Review: Set Theory

Work on this problem with the people around you.



Problem 7 – Review: Set Theory

Work on this problem with the people around you.



Problem 8 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of 
elements that f sends C to. In other words, f(C) = {f(c) : c ∈ C}. 

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Work on this problem with the people around you.



Problem 8 – Review: Functions
Let f : X → Y be a function. For a subset C of X, define f(C) to be the set of 
elements that f sends C to. In other words, f(C) = {f(c) : c ∈ C}. 

Let A, B be subsets of X. Prove that f(A ∩ B) ⊆ f(A) ∩ f(B).

Let y ∈ f(A ∩ B) be arbitrary. 

Then there exists some element x ∈ A ∩ B such that f(x) = y. 
Then by the definition of intersection, x ∈ A and x ∈ B. Then f(x) ∈ f(A) and 
f(x) ∈ f(B). Thus y ∈ f(A) and y ∈ f(B). 

By definition of intersection, y ∈ f(A) ∩ f(B). 

Since y was arbitrary, f(A ∩ B) ⊆ f(A) ∩ f(B).



Problem 9 – Review: Induction
a) A Husky Tree is a tree built by the following definition: 

Basis: A single gold node is a Husky Tree. 
Recursive Rules: 
1. Let T1, T2 be two Husky Trees, both with root nodes colored gold. Make a new 
purple root node and attach the roots of T1, T2 to the new node to make a new Husky 
Tree. 
2. Let T1, T2 be two Husky Trees, both with root nodes colored purple. Make a new 
purple root node and attach the roots of T1, T2 to the new node to make a new Husky 
Tree. 
3. Let T1, T2 be two Husky Trees, one with a purple root, the other with a gold root. 
Make a new gold root node, and attach the roots of T1, T2 to the new node to make a 
new Husky Tree. 

Use structural induction to show that for every Husky Tree: if it has a purple root, then it 
has an even number of leaves and if it has a gold root, then it has an odd number of 
leaves. Work on this problem with the people around you.
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Problem 9 – Review: Induction
Let  P(T)  be “if T has a purple root, then it has an even number of leaves and if T 
has a gold root, then it has an odd number of leaves.” We show P(T) holds for all 
Husky Trees T by structural induction.

Base Case: Show  P(•). Let • be a Husky Tree made from the basis step. By the 
definition of Husky Tree, • must be a single gold node. That node is also a leaf node 
(since it has no children), so there are an odd number (specifically, 1) of leaves, as 
required for a gold root node. So, P(•) holds.

Inductive Hypothesis: Suppose  P(T1)  and  P(T2)  for arbitrary Husky Trees T1  
and T2 .
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Problem 9 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = 

n(2n − 1) 

Work on this problem with the people around you.
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Problem 9 – Review: Induction
(b) Use induction to prove that for every positive integer n, 1 + 5 + 9 + · · · + (4n − 3) = 

n(2n − 1)  

i.e. 1 + 5 + 9 + · · · + (4k − 3) = k(2k − 1)



Problem 10 – Review: Languages
(a) Construct a regular expression that represents binary strings where no 

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(c)  Construct a DFA that recognizes the language of all binary strings which, 
when interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in 
base-10, so should be accepted while 111 is 7 in base-10, so should be 
rejected. The first bit processed will be the most-significant bit. 
Hint: you need to keep track of the remainder %3. What happens to a binary 
number when you add a 0 at the end? A 1? It’s a lot like a shift operation... 

(d) Construct a DFA that recognizes the language of all binary strings with an 
even number of 0’s and each 0 is (immediately) followed by at least one 1.

Work on this problem with the people around you.
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Problem 10– Review: Languages
(a) Construct a regular expression that represents binary strings where no 

occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}

(0∗ (10)∗ ) ∗ 1 ∗ 

S  →  1S4  |  T 
T  →  2T3  |  ε 
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when interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in 
base-10, so should be accepted while 111 is 7 in base-10, so should be 
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Problem 10– Review: Languages
(d) Construct a DFA that recognizes the language of all binary strings with an 

even number of 0’s and each 0 is (immediately) followed by at least one 1.

q0: even number of 0’s, with final 0 
followed by at least one 1 

q1: odd number of 0’s, with final 0 not 
yet followed by at least one 1 

q2: odd number of 0’s, with final 0 
followed by at least one 1 

q3: even number of 0’s, with final 0 not 
yet followed by at least one 1 

q4: garbage state where at least one 0 
is not followed by at least one 1



Problem 11– Review: Uncountability
(a) Let S be the set of all real numbers in [0, 1) that only have 0s and 1s in their 

decimal representation. Prove that S is uncountably infinite.
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(a) Let S be the set of all real numbers in [0, 1) that only have 0s and 1s in their 

decimal representation. Prove that S is uncountably infinite.



That’s All, Folks!

Thanks for coming to section this week!
Any questions?


