CSE 311 Section 10

Final Review




Administrivia




Announcements & Reminders

e HWY7 Regrade Requests
o Grades out!
o Submit a regrade request if something was graded incorrectly

e HWS8
o Due yesterday
o Late due date 12/7

e Final Exam
o Monday 12/9 @ 12:30pm-2:20 @ KNE 210/220
o Fill out Form for Conflict Exam



Irregularity




A note for your final...

You WILL have a question on the final exam where you will
have a choice between either proving a language is
irregular OR proving a set is uncountable.

For section today, we will go over how to prove a language is
irregular. There is also a problem in the handout on proving a
set is uncountable you can review if you prefer to prepare for
that question. You should pick whichever you think is easier
for you, and make sure you are prepared to do it on the final
exam!



Irregularity Template

Claim: L is an irregular language.

Proof: Suppose, for the sake of contradiction, that L is regular. Then there is a DFA M such
that M accepts exactly L.

Let § = [TODO] (S is an infinite set of strings)

Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. [TODO] (We don’t get to choose x, y, but we can describe them
based on that set S we just defined)

Consider the string z = [TODO] (We do get to choose z depending on x, y)

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state g in M. Observe that xz = [TODO], so xz € L but yz = [TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Irregularity Example from Lecture
Claim: {0¥1*: k 2 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0*1*: k 2 0} is regular. Then there is a
DFA M such that M accepts exactly L.

Let S ={0%: k =0}

Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. Since both are in S, x = 0¢ for some integer a = 0, and y = 0” for
some integer b 2 0, with a # b.

Consider the string z = 12..
Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state ¢ in M. Observe that xz = 01, so xz € L but yz = 0°1¢, so yz ¢ L. Since ¢ is can be only

one of an accept or reject state, M does not actually recognize L. That’'s a contradiction!

Therefore, L is an irregular language.



Problem 1 - Irregularity
a) Letx={0, 1}. Prove that {0"1"0" : n = 0} is not regular.

b) LetZ={0, 1, 2}. Prove that {0"(12)™ : n = m = 0} is not regular.

Work on this problem with the people around you.



Problem 1 - Irregul_arity (a) Let X ={0, 1}. Prove that {0™"0" : n = 0} is not regu
Claim: {0"1"0" : n = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"1"0" : n = 0} is regular. Then there
is a DFA M such that M accepts exactly L.

Let S = [TODO]
Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. [TODO] .

Consider the string z = [TODO] .

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state g in M. Observe that xz = [TODO] , so xz € L but yz =[TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Problem 1 - Irregul_arity (a) Let X ={0, 1}. Prove that {0™"0" : n = 0} is not regu
Claim: {0"1"0" : n = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"1"0" : n = 0} is regular. Then there
is a DFA M such that M accepts exactly L.

Let S={0"1":n =0}
Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. [TODO] .

Consider the string z = [TODO] .

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state g in M. Observe that xz = [TODO] , so xz € L but yz =[TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Problem 1 - Irregul_arity (a) Let X ={0, 1}. Prove that {0™"0" : n = 0} is not regu
Claim: {0"1"0" : n = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"1"0" : n = 0} is regular. Then there
is a DFA M such that M accepts exactly L.

Let S ={0"1":n =0}

Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. Since both are in S, x = 01¢ for some integer a = 0, and y = 0°1°
for some integer b = 0, with a # b.

Consider the string z = [TODO] .

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state ¢ in M. Observe that xz = [TODO], so xz € L but yz = [TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a
contradiction!

Therefore, L is an irregular language.



Problem 1 - Irregul_arity (a) Let X ={0, 1}. Prove that {0™"0" : n = 0} is not regu
Claim: {0"1"0" : n = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"1"0" : n = 0} is regular. Then there
is a DFA M such that M accepts exactly L.

Let S ={0"1":n =0}

Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. Since both are in S, x = 01¢ for some integer a = 0, and y = 0°1°
for some integer b = 0, with a # b.

Consider the string z = 02..

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state g in M. Observe that xz = [TODO], so xz € L but yz =[TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Problem 1 - Irregul_arity (a) Let X ={0, 1}. Prove that {0™"0" : n = 0} is not regu
Claim: {0"1"0" : n = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"1"0" : n = 0} is regular. Then there
is a DFA M such that M accepts exactly L.

Let S ={0"1":n =0}

Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. Since both are in S, x = 01¢ for some integer a = 0, and y = 0°1°
for some integer b = 0, with a # b.

Consider the string z = 02..
Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state ¢ in M. Observe that xz = 01“0“ , so xz € L but yz = 0°1°0¢, so yz € L. Since ¢ is can be

only one of an accept or reject state, M does not actually recognize L. That’s a contradiction!

Therefore, L is an irregular language.



Problem 1 - |rregu|_arity (b) Let =1{0, 1, 2}. Prove that {0"(12)™ : n = m 2 0} is not

regular.
Claim: {0"(12)™ : n =2 m = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"(12)™ : n = m = 0} is regular. Then
there is a DFA M such that M accepts exactly L.

Let S = [TODO]
Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. [TODO] .

Consider the string z = [TODO] .

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state g in M. Observe that xz = [TODO], so xz € L but yz =[TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Problem 1 - |rregu|_arity (b) Let =1{0, 1, 2}. Prove that {0"(12)™ : n = m 2 0} is not

regular.
Claim: {0"(12)™ : n =2 m = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"(12)™ : n = m = 0} is regular. Then
there is a DFA M such that M accepts exactly L.

Let S={0":n=0}
Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. [TODO]

Consider the string z = [TODO] .

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state g in M. Observe that xz = [TODO], so xz € L but yz =[TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Problem 1 - |rregu|_arity (b) Let =1{0, 1, 2}. Prove that {0"(12)™ : n = m 2 0} is not

regular.
Claim: {0"(12)™ : n =2 m = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"(12)™ : n = m = 0} is regular. Then
there is a DFA M such that M accepts exactly L.

Let S ={0":n=0}

Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. Since both are in S, x = 0¢ for some integer a = 0, and y = 0” for
some integer b 2 0. Assume without loss of generality that a > b. (Or go by cases).

Consider the string z = [TODO] .

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state g in M. Observe that xz = [TODO], so xz € L but yz =[TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Problem 1 - |rregu|_arity (b) Let =1{0, 1, 2}. Prove that {0"(12)™ : n = m 2 0} is not

regular.
Claim: {0"(12)™ : n =2 m = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"(12)™ : n = m = 0} is regular. Then
there is a DFA M such that M accepts exactly L.

Let S ={0":n=0}

Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. Since both are in S, x = 0¢ for some integer a = 0, and y = 0” for
some integer b =2 0, Assume without loss of generality that a > b. (Or go by cases).

Consider the string z = (12)? .

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state g in M. Observe that xz = [TODO], so xz € L but yz =[TODO], so yz ¢ L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Problem 1 - |rregu|_arity (b) Let =1{0, 1, 2}. Prove that {0"(12)™ : n = m 2 0} is not

regular.
Claim: {0"(12)™ : n =2 m = 0} is an irregular language.

Proof: Suppose, for the sake of contradiction, that L = {0"(12)™ : n = m = 0} is regular. Then
there is a DFA M such that M accepts exactly L.

Let S ={0":n=0}

Because the DFA is finite, there are two (different) strings x, y in S such that x and y go to the
same state when read by M. Since both are in S, x = 0¢ for some integer a = 0, and y = 0” for
some integer b 2 0. Assume without loss of generality that a > b. (Or go by cases).

Consider the string z = (12)? .

Since x, y led to the same state and M is deterministic, xz and yz will also lead to the same
state ¢ in M. Observe that xz = 09(12)? , so xz € L but yz = 0°(12)?, so yz € L. Since ¢ is can
be only one of an accept or reject state, M does not actually recognize L. That's a

contradiction!

Therefore, L is an irregular language.



Problem 11- Review: Uncountability

Let S be the set of all real numbers in [0, 1) that only have Os and 1s in their
decimal representation. Prove that S is uncountably infinite.



Problem 11- Review: Uncountability

Let S be the set of all real numbers in [0, 1) that only have Os and 1s in their
decimal representation. Prove that S is uncountably infinite.

Suppose for the sake of contradiction that S is countable. Then there exists a surjection f : N — S. So for each
natural number i, we have some decimal sequence of Os and 1s that : maps to.



Problem 11- Review: Uncountability

Let S be the set of all real numbers in [0, 1) that only have Os and 1s in their
decimal representation. Prove that S is uncountably infinite.

Suppose for the sake of contradiction that S is countable. Then there exists a surjection f : N — S. So for each
natural number i, we have some decimal sequence of Os and 1s that : maps to.

We now construct an element z. We start x with 0. (a zero and decimal point). Then for all ¢ € N, let the ith
digit after the decimal point be 1 if f(¢) =0, and 0 if f(i) = 1.



Problem 11- Review: Uncountability

Let S be the set of all real numbers in [0, 1) that only have Os and 1s in their
decimal representation. Prove that S is uncountably infinite.

Suppose for the sake of contradiction that S is countable. Then there exists a surjection f : N — S. So for each
natural number i, we have some decimal sequence of Os and 1s that : maps to.

We now construct an element z. We start x with 0. (a zero and decimal point). Then for all ¢ € N, let the ith
digit after the decimal point be 1 if f(¢) =0, and 0 if f(i) = 1.

Note that by our construction, for any i € N, f(i) differs from = on the i-th digit after the decimal point.
Furthermore by our construction, z contains only Os and 1s in its decimal expansion and = € [0,1), so z € S.
Since x € S but is not in the range of f, f is not surjective. This is a contradiction. Therefore S is uncountable.



Final Review




Problem 5 - Review: Translations

Translate the following sentences into logical notation if the English statement is given or to an
English statement if the logical statement is given, taking into account the domain restriction. Let
the domain of discourse be students and courses. Use predicates Student, Course, CseCourse
to do the domain restriction. You can use Taking (x, y) which is true if and only if x is taking y.
You can also use RobbieTeaches (x) if and only if Robbie teaches x and ContainsTheory (x)
if and only if x contains theory. Find the contrapositive and contradiction for questions (a) - (c).

(a) Every student is taking some course.

(b) There is a student that is not taking every cse course.

(c) Some student is taking only one cse course.

(d) Vx[(Course(x) A RobbieTeaches(x)) — ContainsTheory (x) ]

() 3TAx CseCourse(x) A RobbieTeaches(x) A ContainsTheory(x) A
Vv ((CseCourse(y) A RobbieTeaches(y)) — x = y)

Work on this problem with the people around you.



Problem 5 - Review: Translations

a) Every student is taking some course.

b) There is a student that is not taking any cse course.

c) Some student is taking only one cse course.

d) VXx[(Course(x) A RobbieTeaches(x)) — ContainsTheory(x)]

e) I x CseCourse(x) A RobbieTeaches(x) A ContainsTheory(x) A Vy((CseCourse(y) A
RobbieTeaches(y)) — x =)



Problem 5 - Review: Translations

a) Every student is taking some course.

Translation:

Vv x 3 y(Student(x) — [Course(y) A Taking(x, y)])



Problem 5 - Review: Translations

a) Every student is taking some course.

Translation: Vv x 3 y(Student(x) — [Course(y) A Taking(x, y)])

Contrapositive: v x3y((—Course(y) V = Taking(x, y)) — — Student(x))

Consider the implication
Student(x) — [Course(y) A Taking(x, y)]

Take the contrapositive: P - Qis 7Q — 7P
—1(Course(y) A Taking(x, y)) — — Student(x)
Apply DeMorgan’s
(T Course(y) V 1Taking(x, y)) — 7 Student(x)

Apply Quantifiers
vV x3y((— Course(y) V 7 Taking(x, y)) — 7 Student(x))



Problem 5 - Review: Translations

a) Every student is taking some course.

Translation: vV x 3 y(Student(x) — [Course(y) A Taking(x, y)])
Contrapositive: v x3y((— Course(y) V = Taking(x, y)) — 1 Student(x))

Contradiction: 3x Vv y(— Student(x) A [ Course(y) V —Taking(x, y)])
Negate the statement

— V x 3 y(Student(x) — [Course(y) A Taking(x, y)])

Apply negation to quantifiers
AxVy(— (Student(x) — [Course(y) A Taking(x, y)]))

Apply the law of implication:A—-B = 7AV B
IxVy( (7 Student(x) V [Course(y) A Taking(x, y)]))

Negate the statement & apply DeMorgan’s law
I xVy(™ Student(x) A [ Course(y) V —Taking(x, y)])



Problem 5 - Review: Translations

a) Every student is taking some course.

Translation: vV x 3 y(Student(x) — [Course(y) A Taking(x, y)])
Contrapositive: v x3y((— Course(y) V = Taking(x, y)) — 1 Student(x))
Contradiction: 3 xVvy(—Student(x) A [ Course(y) V —1Taking(x, y)])



Problem 5 - Review: Translations

a) Every student is taking some course.

b) There is a student that is not taking any cse course.

c) Some student is taking only one cse course.

d) VXx[(Course(x) A RobbieTeaches(x)) — ContainsTheory(x)]

e) I x CseCourse(x) A RobbieTeaches(x) A ContainsTheory(x) A Vy((CseCourse(y) A
RobbieTeaches(y)) — x =)



Problem 5 - Review: Translations

b) There is a student that is not taking any cse course.

Translation:

A xV y[Student(x) A (CseCourse(y) — — Taking(x, y))]



Problem 5 - Review: Translations

b) There is a student that is not taking any cse course.

Translation: 3 xV y[Student(x) A (CseCourse(y) — — Taking(x, y))]

Contrapositive: No contrapositive

You can only meaningfully apply contrapositives to implications.

There is no implication on our logical predicate.



Problem 5 - Review: Translations

b) There is a student that is not taking any cse course.

Translation: 3 xV y[Student(x) A (CseCourse(y) — — Taking(x, y))]
Contrapositive: No contrapositive

Contradiction v x3y(~ Student(x) V [CseCourse(y) A Taking(x, y)])
Negate the statement

- IxVy[Student(x) A (CseCourse(y) — — Taking(x, y))]

Apply negation to quantifiers
VvV x 3 y~[Student(x) A (CseCourse(y) — — Taking(x, y))]

Apply the law of implication:A—-B = 7AV B
VvV x3y ~[Student(x) A (7CseCourse(y) V — Taking(x, y))]

Negate the statement & apply DeMorgan’s law
VvV x 3y ~Student(x) V (CseCourse(y) A Taking(x, y))



Problem 5 - Review: Translations

b) There is a student that is not taking any cse course.

Translation: 3 xV y[Student(x) A (CseCourse(y) — — Taking(x, y))]
Contrapositive: No contrapositive
Contradiction: v x3y(~ Student(x) V [CseCourse(y) A Taking(x, y)])



Problem 5 - Review: Translations

a) Every student is taking some course.

b) There is a student that is not taking any cse course.

c) Some student is taking only one cse course.

d) VXx[(Course(x) A RobbieTeaches(x)) — ContainsTheory(x)]

e) I x CseCourse(x) A RobbieTeaches(x) A ContainsTheory(x) A Vy((CseCourse(y) A
RobbieTeaches(y)) — x =)



Problem 5 - Review: Translations

c) Some student is taking only one cse course.

Translation:

3 x 3 y[Student(x) A CseCourse(y) A Taking(x, y) A Vz((CseCourse(z) A Taking(x, z)) — y = z))]



Problem 5 - Review: Translations

c) Some student is taking only one cse course.

Translation: 3 x 3 y[Student(x) A CseCourse(y) A Taking(x, y) A V¥ z((CseCourse(z) A Taking(x, z)) — Y

Contrapositive: No contrapositive

You can only meaningfully apply contrapositives to implications.

There is no implication on our logical predicate.



Problem 5 - Review: Translations

c) Some student is taking only one cse course.

Translation: 3 x3y[Student(x) A CseCourse(y) A Taking(x, y) A V z((CseCourse(z) A Taking(x, z)) — Y
Contrapositive: No contrapositive

Contradiction: v xVy [~Student(x) V “CseCourse(y) V —Taking(x, y) V 3Iz(CseCourse(z) A Taking(x, :
(y # 2))]

Negate the statement
- I x I y[Student(x) A CseCourse(y) A Taking(x, y) A Vz((CseCourse(z) A Taking(x, z)) >y =

z))]
App?y negation to quantifiers
Vv xV'y 7[Student(x) A CseCourse(y) A Taking(x, y) A Vz((CseCourse(z) A Taking(x, z)) >y =
z
App)l)y]/ negation & DeMorgan’s law
VvV xVy ["Student(x) V 7CseCourse(y) V —Taking(x, y) V 7(V z((CseCourse(z) A Taking(x, z))

—

y =2)))



Problem 5 - Review: Translations

c) Some student is taking only one cse course.

Translation: 3 x3y[Student(x) A CseCourse(y) A Taking(x, y) A V z((CseCourse(z) A Taking(x, z)) — Y
Contrapositive: No contrapositive

Contradiction: v xVy [~Student(x) V “CseCourse(y) V —Taking(x, y) V 3Iz(CseCourse(z) A Taking(x, :
(y # 2))]

VvV xVy ["Student(x) V 7CseCourse(y) V —Taking(x, y) V 7(V z((CseCourse(z) A Taking(x, z))

—

y =2)))l
Negate the quantifier for z

VvV xVy ["Student(x) V 7CseCourse(y) V - Taking(x, y) V 3z(~((CseCourse(z) A Taking(x, z))

y =2))]
Apply law of implication:A—-B = "AV B
VvV xVy ["Student(x) V "CseCourse(y) V —Taking(x, y) V 3 z(7(~(CseCourse(z) A Taking(x, z))
Vv
(y =2))]



Problem 5 - Review: Translations

c) Some student is taking only one cse course.

Translation: 3 x3y[Student(x) A CseCourse(y) A Taking(x, y) A V z((CseCourse(z) A Taking(x, z)) — Y
Contrapositive: No contrapositive

Contradiction: v xVy [~Student(x) V “CseCourse(y) V —Taking(x, y) V 3Iz(CseCourse(z) A Taking(x, :
(y # 2))]

VvV xVy ["Student(x) V 7CseCourse(y) V —Taking(x, y) V 3 z(~(~(CseCourse(z) A Taking(x, z))
\%

(y=2))l
Apply negation & DeMorgan’s law

V xVy ["Student(x) V “CseCourse(y) V —Taking(x,y) V 3z(CseCourse(z) A Taking(x, z)) A
(y # 2))]



Problem 5 - Review: Translations

c) Some student is taking only one cse course.

Translation: 3 x3y[Student(x) A CseCourse(y) A Taking(x, y) A V z((CseCourse(z) A Taking(x, z)) — Y

Contrapositive: No contrapositive
Contradiction: v xVy [~Student(x) V ~CseCourse(y) V -Taking(x, y) V 3z(CseCourse(z) A Taking(x, z
(y #2))]



Problem 5 - Review: Translations

a) Every student is taking some course.

b) There is a student that is not taking any cse course.

c) Some student is taking only one cse course.

d) VXx[(Course(x) A RobbieTeaches(x)) — ContainsTheory(x)]

e) 3 xCseCourse(x) A RobbieTeaches(x) A ContainsTheory(x) A Vy((CseCourse(y) A
RobbieTeaches(y)) — x =)



Problem 5 - Review: Translations

d) Vx[(Course(x) A RobbieTeaches(x)) — ContainsTheory(x)]
Every course taught by Robbie contains theory.

e) I xCseCourse(x) A RobbieTeaches(x) A ContainsTheory(x) A Vy((CseCourse(y) A
RobbieTeaches(y)) — x =vy)



Problem 5 - Review: Translations

d) Vx[(Course(x) A RobbieTeaches(x)) — ContainsTheory(x)]
Every course taught by Robbie contains theory.

e) I xCseCourse(x) A RobbieTeaches(x) A ContainsTheory(x) A Vy((CseCourse(y) A
RobbieTeaches(y)) — x =vy)

There is only one cse course that Robbie teaches and that course contains theory.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

a) Contradiction For all real numbers z,y, if z # y,2 > 0,y > 0, then 7 + £ > 2.
b) Contrapositive every multiple of 3 can be written as a sum of three consecutive integers.
c) Direct Proof n? — 3 is even if n is odd, for some integer n.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Contradiction For all real numbers z,y, if z # y,z > 0,y > 0, then £ + £ > 2.
Yy x

(i) How would you start your proof by contradiction? Remember to introduce all variables needed and all
starting assumptions.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Contradiction For all real numbers z,y, if z # y,z > 0,y > 0, then £ + £ > 2,
Yy x

(i) How would you start your proof by contradiction? Remember to introduce all variables needed and all
starting assumptions.

Solution:

Recall that contradiction assumes the negation of the statement is true, then shows that this leads to
a contradiction.

Our premise is a universal for all statement, thus the negation is an existential there exists statement.
As we bring the negation in, we do not adjust the definitions of x, y, but we do negate the conclusion:
> becomes <.

Suppose, for the sake of contradiction, there exist some real numbers z,y, z # y,z > 0,y > 0 and
x y

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Contradiction For all real numbers z,y, if z # y,z > 0,y > 0, then £ + £ > 2.
Yy x

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Contradiction For all real numbers z,y, if z # y,z > 0,y > 0, then £ + £ > 2,
Yy x

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Solution:

But, this is a contradiction, because ...

The target is to show there is a contradiction based on the negated claim.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Contrapositive every multiple of 3 can be written as a sum of three consecutive integers.

(i) How would you start your proof by contrapositive? Remember to introduce all variables needed and all
starting assumptions.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Contrapositive every multiple of 3 can be written as a sum of three consecutive integers.

(i) How would you start your proof by contrapositive? Remember to introduce all variables needed and all
starting assumptions.

Solution:

The original statement resembled, for some integer a, if a is a multiple of 3 then a can be expressed
as the sum of three consecutive integers (b) + (b+ 1) + (b + 2).

The contrapositive negates the statement, which reverses the implication and negates both sides: If
a can NOT be expressed as the sum of three consecutive integers (b) + (b+ 1) + (b+ 2), then a is NOT
a multiple of three.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Contrapositive every multiple of 3 can be written as a sum of three consecutive integers.

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Contrapositive every multiple of 3 can be written as a sum of three consecutive integers.

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Solution:

Since our three consecutive integers b,b + 1,b + 2 were arbitrary, we know a can NOT be expressed
as the sum of three consecutive integers (b) + (b+ 1) + (b + 2), and therefore a is NOT a multiple of
three.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Direct Proof n? — 3 is even if n is odd, for some integer n.

(i) How would you start your direct proof? Remember to introduce all variables needed and all starting
assumptions.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Direct Proof n? — 3 is even if n is odd, for some integer n.

(i) How would you start your direct proof? Remember to introduce all variables needed and all starting
assumptions.

Solution:

The hypothesis, the premise of our direct proof implication, is that n is odd.

Work on this problem with the people around you.




Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Direct Proof n? — 3 is even if n is odd, for some integer n.

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Work on this problem with the people around you.



Problem 6 - Review: Proof Skeleton Setup

For each of the following, write the beginning and target of your proof (not the
middle reasoning)

Direct Proof n? — 3 is even if n is odd, for some integer n.

(ii) What would your target be? Do not write the full proof. If the target is unclear, describe the statement
you should target instead.

Solution:

The conclusion of our direct proof is that therefore, n? — 3 is even when n is odd.

Work on this problem with the people around you.



Problem 7 - Review: Set Theory

Suppose that A C B. Prove that P(A) C P(B).

Work on this problem with the people around you.



Problem 7 - Review: Set Theory

Suppose that A C B. Prove that P(A) C P(B).

Suppose A C B. Let X € P(A) be an arbitrary element. Then by definition of powerset, X C A. Lety € X
be arbitrary. Then since X C A, by definition of subset, y € A. Since A C B, by definition of subset again,
y € B. Since y was arbitrary in X, by definition of subset once more, X C B. Then by definition of powerset,
X € P(B). Since X was arbitrary in P(A), we have shown P(A) C P(B).

Work on this problem with the people around you.




Problem 8 - Review: Functions

Letf: X — Y be a function. For a subset C of X, define f(C) to be the set of
elements that f sends C to. In other words, f(C) = {f(c) : ¢ € C}.

Let A, B be subsets of X. Prove that f(A N B) S f(A) N f(B).

Work on this problem with the people around you.



Problem 8 - Review: Functions

Letf: X — Y be a function. For a subset C of X, define f(C) to be the set of
elements that f sends C to. In other words, f(C) = {f(c) : ¢ € C}.

Let A, B be subsets of X. Prove that f(A N B) S f(A) N f(B).

Lety € f(A N B) be arbitrary.

Then there exists some element x € AN B such that f(x) =y.

Then by the definition of intersection, x € Aand x € B. Then f(x) € f(A) and
f(x) € f(B). Thusy € f(A) andy € f(B).

By definition of intersection, y € f(A) N f(B).

Since y was arbitrary, f(A N B) € f(A) N f(B).



Problem 9 - Review: Induction

a)

A Husky Tree is a tree built by the following definition:

Basis: A single gold node is a Husky Tree.

Recursive Rules:

1. Let T1, T2 be two Husky Trees, both with root nodes colored gold. Make a new
purple root node and attach the roots of T1, T2 to the new node to make a new Husky
Tree.

2. Let T1, T2 be two Husky Trees, both with root nodes colored purple. Make a new
purple root node and attach the roots of T1, T2 to the new node to make a new Husky
Tree.

3. Let T1, T2 be two Husky Trees, one with a purple root, the other with a gold root.
Make a new gold root node, and attach the roots of T1, T2 to the new node to make a
new Husky Tree.

Use structural induction to show that for every Husky Tree: if it has a purple root, then it
has an even number of leaves and if it has a gold root, then it has an odd number of

leaves.  \Work on this problem with the people around you.



Problem 9 - Review: Induction

1. Define P() Show that P(x) holds for all x € S. State your proof is by
structural induction.

2. Base Case: Show P(x) for all base cases x in S.

3. Inductive Hypothesis: Suppose P(x) for all x listed as in S in the
recursive rules.

4. Inductive Step: Show P() holds for the “new element” given.
You will need a separate step for every rule.
5. Therefore P(x) holds for all x € S by the principle of induction.



Problem 9 - Review: Induction

Let P(T) be “if T has a purple root, then it has an even number of leaves and if T
has a gold root, then it has an odd number of leaves.” We show P(T) holds for all
Husky Trees T by structural induction.

Base Case: Show P(°). Let » be a Husky Tree made from the basis step. By the
definition of Husky Tree, * must be a single gold node. That node is also a leaf node
(since it has no children), so there are an odd number (specifically, 1) of leaves, as
required for a gold root node. So, P(°) holds.

Inductive Hypothesis: Suppose P(T1) and P(T2) for arbitrary Husky Trees T1
and T2 .



Problem 9 — Review: Induction

Inductive Step: Show P(Y) holds: We will have separate cases for each possible rule.

Rule 1: Suppose T1 and T2 both have gold roots. By the recursive rule, Y has a purple root. By inductive
hypothesis on T1, since T1’s root is gold, it has an odd number of leaves. Similarly by IH, T2 has an odd
number of leaves. Y’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in Y is the
sum of two odd numbers, which is even. Thus Y has an even number of leaves, as is required for a purple
root. Thus P(Y) holds.

Rule 2: Suppose T1 and T2 both have purple roots. By the recursive rule, Y has a purple root. By inductive
hypothesis on T1, since T1’s root is purple, it has an even number of leaves. Similarly by IH, T2 has an
even number of leaves. Y’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in Y is
the sum of two even numbers, which is even. ThusY has an even number of leaves, as is required for a
purple root. Thus P(Y) holds.

Rule 3: Suppose T1 and T2 have opposite colored roots. Let T1 be the one with a gold root, and T2 the
one with the purple root. By the recursive rule, Y has a gold root. By inductive hypothesis on T1, since
T1’srootis gold, it has an odd number of leaves. Similarly, by IH, T2 has an even number of leaves since it
has a purple root. Y’s leaves are exactly the leaves of T1 and T2, so the total number of leaves in Y is the
sum of an odd number and an even number, which is odd. Thus Y has an odd number of leaves, as is
required for a gold root. Thus P(T) holds.

Therefore P(T) holds for all Husky Trees T by the principle of induction.



Problem 9 - Review: Induction

(b) Use induction to prove that for every positive integern, 1 +5+9+ - - -+ (4n-3) =
n(2n - 1)

Work on this problem with the people around you.



Problem 9 - Review: Induction

(b) Use induction to prove that for every positive integern, 1 +5+9 + - -

n(2n - 1
Let P(T(l) be “”.)We show P(n) holds for (some) n by induction onn.

Base Case: P(b):
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > b.
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds for (some) n by the principle of induction.

~+(@4n-3)=



Problem 9 - Review: Induction

(b) Use induction to prove that for every positive integern, 1 +5+9+ - - -+ (4n-3) =
n(2n - 1
Let P(T(l) be “l)+ 5+9+:--+(4n-3)=n(2n - 1)”. We show P (n) holds forall n € Z* by induction on

n.

Base Case: P(b):

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > b.
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds for all n € Z* by the principle of induction.




Problem 9 - Review: Induction

(b) Use induction to prove that for every positive integern, 1 +5+9+ - - -+ (4n-3) =
n(2n - 1
Let P(T(l) be “1)+ 5+9+:--+(4n-3)=n(2n - 1)”. We show P (n) holds forall n € Z* by induction on

n.

Base Case: P(1): We have 1=1(1) =1(2 — 1) which is P(1) so the base case holds.
Inductive Hypothesis: Suppose P (k) holds for an arbitrary k > b.

Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds for all n € Z* by the principle of induction.




Problem 9 - Review: Induction

(b) Use induction to prove that for every positive integern, 1 +5+9+ - - -+ (4n-3) =

n(2n - 1
Let P(n)(be “1 +)5 +9+---+(4n-3)=n(2n - 1)”. We show P(n) holds forall n € Z* by induction on

n.
Base Case: P(1): We have 1=1(1) =1(2 — 1) which is P(1) so the base case holds.

Inductive Hypothesis: Suppose P(k) holds foran arbitrary k > 1. i.e. 1+5+9+-- -+ (4dk - 3)=k(2k - 1)
Inductive Step: Goal: Show P(k + 1):

Conclusion: Therefore, P(n) holds for all n € Z* by the principle of induction.




Problem 9 - Review: Induction

(b) Use induction to prove that for every positive integern, 1 +5+9+ - - -+ (4n-3) =

n(2n - 1
Let P(n) l(ae “1+5+9+---+(4n-3)=n(2n - 1)”. We show P(n) holds forall n € Z* by induction on

n.
Base Case: P(1): We have 1=1(1) =1(2 — 1) which is P(1) so the base case holds.

Inductive Hypothesis: Suppose P(k) holds foran arbitrary k > 1. i.e.1+5+9+ -+ (4dk - 3) =k(2k - 1)
Inductive Step: Goal: Show P(k +1):1+5+9+---+(4(k+1)-3)=(k+1)(2(k+1)-1)

Conclusion: Therefore, P(n) holds for all n € Z* by the principle of induction.




Problem 9 — Review: Induction

(b) Use induction to prove that for every positive integern, 1 +5+9+ - - -+ (4n-3) =
n(i2n - 1
Let P(n)(be “1 +)5 +9+---+(4n-3)=n(2n - 1)”. We show P (n) holds forall n € Z* by induction on

n.
Base Case: P(1): We have 1=1(1) =1(2 — 1) which is P(1) so the base case holds.
Inductive Hypothesis: Suppose P(k) holds foran arbitrary k > 1. i.e.1+5+9+ -+ (4dk - 3) =k(2k - 1)
Inductive Step: Goal: Show P(k +1):1+5+9+---+(4(k+1)-3)=(k+1)(2(k+1)-1)
We have:
1+5+9+---+(4k+1)-3)=1+5+9+---+(4k-3) + (4(k + 1) - 3)

k(2k - 1) + (4(k + 1) - 3) [Inductive Hypothesis]
k(2k-1)+ (4k +1) =2k 2+3k+1=(k+1)(2k +1) [Factor]
=(k+1)(2(k +1) - 1)

This proves P(k + 1).

Conclusion: Therefore, P(n) holds for all n € Z* by the principle of induction.




Problem 10 - Review: Languages

(a) Construct a regular expression that represents binary strings where no
occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1*2Y3Y4* : x, y = 0}

(c) Construct a DFA that recognizes the language of all binary strings which,
when interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in
base-10, so should be accepted while 111 is 7 in base-10, so should be
rejected. The first bit processed will be the most-significant bit.

Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 17? It's a lot like a shift operation...

(d) Construct a DFA that recognizes the language of all binary strings with an
even number of 0’s and each 0 is (immediately) followed by at least one 1.

Work on this problem with the people around you.
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(a) Construct a regular expression that represents binary strings where no
occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1*2Y3Y4* : x, y = 0}



Problem 10 - Review: Languages

(a) Construct a regular expression that represents binary strings where no
occurrence of 11 is followed by a 0.

(0" (10))* 1"

(b) Construct a CFG that represents the following language: {1*2Y3Y4* : x, y = 0}



Problem 10- Review: Languages

(a) Construct a regular expression that represents binary strings where no
occurrence of 11 is followed by a 0.

(b) Construct a CFG that represents the following language: {1*2Y3Y4* : x, y = 0}

S > 184 | T
T > 2T3 | ¢



Problem 10- Review: Languages

(c) Construct a DFA that recognizes the language of all binary strings which,
when interpreted as a binary number, are divisible by 3. e.g. 11is 3 in
base-10, so should be accepted while 111 is 7 in base-10, so should be
rejected. The first bit processed will be the most-significant bit.

Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 17? It’s a lot like a shift operation...



Problem 10- Review: Languages

(c)

Construct a DFA that recognizes the language of all binary strings which,
when interpreted as a binary number, are divisible by 3. e.g. 11 is 3 in
base-10, so should be accepted while 111 is 7 in base-10, so should be
rejected. The first bit processed will be the most-significant bit.

Hint: you need to keep track of the remainder %3. What happens to a binary
number when you add a 0 at the end? A 17? It’s a lot like a shift operation...



Problem 10- Review: Languages

(d) Construct a DFA that recognizes the language of all binary strings with an
even number of 0’s and each 0 is (immediately) followed by at least one 1.



Problem 10- Review: Languages

(d) Construct a DFA that recognizes the language of all binary strings with an
even number of 0’s and each 0 is (immediately) followed by at least one 1.

g0: even number of O’s, with final 0
followed by at least one 1

g1: odd number of 0’s, with final O not
yet followed by at least one 1

g2: odd number of 0’s, with final 0
followed by at least one 1

g3: even number of 0’s, with final 0 not
yet followed by at least one 1

g4: garbage state where at least one 0
is not followed by at least one 1




Problem 11- Review: Uncountability

(a) Let S be the set of all real numbers in [0, 1) that only have Os and 1s in their
decimal representation. Prove that S is uncountably infinite.



Problem 11- Review: Uncountability

(a) Let S be the set of all real numbers in [0, 1) that only have Os and 1s in their
decimal representation. Prove that S is uncountably infinite.

Suppose for the sake of contradiction that S is countable. Then there exists a surjection f : N — S. So for each
natural number ¢, we have some decimal sequence of Os and 1s that + maps to.

We now construct an element x. We start z with 0. (a zero and decimal point). Then for all 7 € N, let the ith
digit after the decimal point be 1 if f(i) = 0, and 0 if f(:) = 1.

Note that by our construction, for any ¢ € N, f(i¢) differs from x on the i-th digit after the decimal point.
Furthermore by our construction, = contains only Os and 1s in its decimal expansion and z € [0,1), so z € S.
Since z € S but is not in the range of f, f is not surjective. This is a contradiction. Therefore S is uncountable.



That's All, Folks!

Thanks for coming to section this week!
Any questions?




