
Section 09: Solutions

1. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the substring
“000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

(d) Write a regular expression that matches all binary strings that do not have any consecutive 0’s or 1’s.

Solution:

((01)∗(0 ∪ ε)) ∪ ((10)∗(1 ∪ ε))

(e) Write a regular expression that matches all binary strings of the form 1ky, where k ≥ 1 and y ∈ {0, 1}∗ has at
least k 1’s.

Solution:

1(0 ∪ 1)∗1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s there are, it turns out that
we don’t. Convince yourself that strings in the language are exactly those of the form 1x, where x is any
binary string with at least one 1. Hence, x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)∗.

2. CFGs

Write a context-free grammar to match each of these languages.

(a) All binary strings that start with 11.
Solution:
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S → 11T

T → 1T | 0T | ε

(b) All binary strings that contain at most one 1.
Solution:

S → ABA

A → 0A | ε
B → 1 | ε

(c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.
Hint: Try modifying the grammar from Section 8 2c for binary strings with the same number of 1s and 0s
(You may need to introduce new variables in the process).
Solution:

S → 2T | T2 | ST | TS | 0S1 | 1S0

T → TT | 0T1 | 1T0 | ε

T is the grammar from Section 8 2c. It generates all binary strings with the same number of 1s and 0s.
S matches a 2 at the beginning or end. The rest of the string must then match T since it cannot have
another 2. If neither the first nor last character is a 2, then it falls into the usual cases of matching 0s and
1s, so we can mostly use the same rules as T. The main change is that SS becomes ST | TS to ensure that
exactly one of the two parts contains a 2. The other change is that there is no ε since a 2 must appear
somewhere.

3. DFAs, Stage 1

Construct DFAs to recognize each of the following languages. Let Σ = {0, 1, 2, 3}.

(a) All binary strings.
Solution:

q0start q1

0, 1

2, 3

0, 1, 2, 3

q0: binary strings

q1: strings that contain a character which is not 0 or 1.

(b) All strings whose digits sum to an even number.
Solution:

2



q0start q1

0, 2

1, 3

0, 2

1, 3

(c) All strings whose digits sum to an odd number.
Solution:

q0start q1

0, 2

1, 3

0, 2

1, 3

4. DFAs, Stage 2

Construct DFAs to recognize each of the following languages. Let Σ = {0, 1}.

(a) All strings which do not contain the substring 101.
Solution:

q0start q1 q2 q3

0

1

1

0
0

1

0, 1

q3: string that contain 101.

q2: strings that don’t contain 101 and end in 10.

q1: strings that don’t contain 101 and end in 1.

q0: ε, 0, strings that don’t contain 101 and end in 00.

(b) All strings containing at least two 0’s and at most one 1.
Solution:
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q0start q1

q2 q3

q4 q5 q6

1

0

1

0

1

0

1

0

1

0

1

0 0, 1

(c) All strings containing an even number of 1’s and an odd number of 0’s and not containing the substring 10.
Solution:

q0start

q1

q2

q3q4

0

1

0

1

0
1

0

1

0, 1

5. NFAs

(a) What language does the following NFA accept?

q0start q1 q2

q3

0

ε

2

ε

1

0

0

Solution:

All strings of only 0’s and 1’s not containing more than one 1.

(b) Create an NFA for the language “all binary strings that have a 1 as one of the last three digits”.
Solution:
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The following is one such NFA:

q0start q1 q2 q3

0, 1

1 0, 1 0, 1

6. DFAs & Minimization

Note: We will not test you on minimization, although you may optionally read the extra slides and do this problem
for fun

(a) Convert the NFA from 1a to a DFA, then minimize it.

Solution:

q0, q1start q2

q3

∅
1 1, 2

0

2 1, 2

0, 1, 2

0

0

Here is the minimized form:

q0, q1start q2 ∅

0

2

1

0

1, 2

0, 1, 2

(b) Minimize the following DFA:

q0start q1 q2 q3 q4

b, c

a

b, c

a

b, c

a

b, c

a

a, b, c

Solution:

Step 1: q0, q2 are final states and the rest are not final. So, we start with the initial partition with the
following groups: group 1 is {q0, q2} and group 2 is {q1, q3, q4}.

Step 2: q1 is sending a to group 1 while q3, q4 are sending a to group 2. So, we divide group 2. We get
the following groups: group 1 is {q0, q2}, group 3 is {q1} and group 4 is {q3, q4}.

Step 3: q0 is sending a to group 3 and q2 is sending a to group 4. So, we divide group 1. We will have
the following groups: group 3 is {q1}, group 4 is {q3, q4}, group 5 is {q0} and group 6 is {q2}.
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The minimized DFA is the following:

q0start q1 q2 q3

b, c

a

b, c

a

b, c

a

a, b, c

7. Relations

(a) Consider the relation R = {(x, y) : x = y+1} on N. Is R reflexive? Transitive? Symmetric? Anti-symmetric?
Solution:

It isn’t reflexive, because 1 6= 1 + 1; so, (1, 1) 6∈ R. It isn’t symmetric, because (2, 1) ∈ R (because
2 = 1+1), but (1, 2) 6∈ R, because 1 6= 2+1. It isn’t transitive, because note that (3, 2) ∈ R and (2, 1) ∈ R,
but (3, 1) 6∈ R. It is anti-symmetric because of the following: consider an arbitrary (x, y) ∈ R where x 6= y.
Then, x = y + 1 by definition of R. However, (y, x) 6∈ R, because y = x− 1 6= x+ 1. Since (x, y) ∈ R was
arbitrary, R is anti-symmetric.

(b) Consider the relation S = {(x, y) : x2 = y2} on R. Prove that S is reflexive, transitive, and symmetric.
Solution:

Consider an arbitrary x ∈ R. Note that by definition of equality, x2 = x2; so, (x, x) ∈ S; since x ∈ R was
arbitrary, S is reflexive.

Consider an arbitrary (x, y) ∈ S. Then, x2 = y2. It follows that y2 = x2; so, (y, x) ∈ S. Since (x, y) ∈ S
was arbitrary, S is symmetric.

Consider an arbitrary (x, y) ∈ S and an arbitrary (y, z) ∈ S. Then, x2 = y2, and y2 = z2. Since equality is
transitive, x2 = z2. So, (x, z) ∈ S. Since (x, y) ∈ S and (y, z) ∈ S were arbitrary, S is transitive.

8. More Relations

Note: We will not test you nor give you homework problems based on the following types of relation problems,
however, you may still attempt these problems for fun, using the lecture slides.

(a) Draw the transitive-reflexive closure of {(1, 2), (2, 3), (3, 4)}.
Solution:
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1

2

3

4

(b) Suppose that R is reflexive. Prove that R ⊆ R2.
Solution:

Suppose (a, b) ∈ R. Since R is reflexive, we know (b, b) ∈ R as well. Since there is a b such that (a, b) ∈ R
and (b, b) ∈ R, it follows that (a, b) ∈ R2. Thus, R ⊆ R2.

9. All The Models

Construct a valid regular expression, CFG, and DFA for the following languages.

(a) All strings whose base-6 representation is divisible by 3 (leading zeros are ok). Let Σ = {0, 1, 2, 3, 4, 5}.

Solution:

Regular Expression:

(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5)∗(0 ∪ 3)

CFG:

S → T0 | T3

T → 0T | 1T | 2T | 3T | 4T | 5T | ε

DFA:

q0start q1

1, 2, 4, 5

0, 3

0, 3

1, 2, 4, 5

(b) All binary strings of 0s capped by a 1 on either side.
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Solution:

We are working with binary strings, therefore Σ = {0, 1}.

Regular Expression:

1(0)∗1

CFG:

S → 1T1

T → 0T | ε

DFA:
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