
CSE 311 Section 09

Models of Computation

Administrivia

Announcements & Reminders
● HW6 Regrade Requests

○ Submit a regrade request if something was graded incorrectly

● HW7
○ Due this Sunday 11/24 @11:59pm
○ Late due date 11/25 @ 11:59pm

● HW8
○ Due Wednesday 12/04 @ 11:59pm

● Final Exam
○ Monday 12/09 @ 12:30pm-2:20
○ Keep an eye out for conflict exam form on Ed

Regular Expressions

Regular Expressions
Basis:
● 𝜀 : The empty string itself matches the pattern (and nothing else does).
● ∅ : No strings match this pattern
● 𝑎 for any 𝑎 ∈ Σ : The character itself matching this pattern

Recursive:
● If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression

○ matched by any string that matches 𝐴 or that matches 𝐵 [or both]
● If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression

○ matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵
● If 𝐴 is a regular expression, then 𝐴* is a regular expression

○ matched by any string that can be divided into 0 or more strings that match 𝐴

Regular Expressions
A regular expression is a recursively defined set of strings that form a
language.

A regular expression will generate all strings in a language, and won’t
generate any strings that ARE NOT in the language

Hints:
● Come up with a few examples of strings that ARE and ARE NOT in

your language
● Then, after you write your regex, check to make sure that it CAN

generate all of your examples that are in the language, and it CAN’T
generate those that are not

Problem 1 – Regular Expressions

Work on this problem with the people around you.

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

base-10 numbers:
Our everyday numbers!
Notice we have 10 symbols
(0-9) to represent numbers.

256: (2 * 102) + (5 * 101) + (6 * 100)

base-2 numbers: (binary)

10: (1 * 21) + (0 * 20)

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7
∪ 8 ∪ 9)∗)

Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7
∪ 8 ∪ 9)∗)

✅Generates only all possible Base-10 numbers

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
✅Generates only all possible Base-3 numbers

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Hint: you know that Base-10 numbers are divisible by 10 when they end in 0 (10, 20, 30, 40…)

Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Hint: you know that Base-10 numbers are divisible by 10 when they end in 0 (10, 20, 30, 40…)

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)
✅all possible Base-3 numbers divisible by 3

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)*

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)*

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* ⚠ Generates “000” like “00 01 111”

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* ⚠ Generates “000” like “00 01 111”

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)✅ all binary strings with “111” and without “000”

Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)*

…without the substring “000”

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)*

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)*

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)

⚠ The Kleene-star has us generating any number of 0’s

Use careful case-work to modify this and produce only 0,1,or two 0’s

⚠ Cannot produce 1’s with “0” or “00” like “1011101”

⚠ Generates “000” like “00 01 111”

✅ all binary strings with “111” and without “000”

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Step 1: Write out basic and more intricate cases

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Step 1: Write out basic and more intricate cases

Accepted Strings Rejected Strings

ε 00

1 11

10101 101011

0101 0100

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Step 1: Write out basic and more intricate cases

Accepted Strings Rejected Strings

ε 00

1 11

10101 101011

0101 0100

Step 2: Find a pattern!

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Accepted Strings Rejected Strings

ε 00

1 11

10101 101011

0101 0100

Step 1: Write out basic and more intricate cases Step 2: Find a pattern!

strings can be generated from
either a series of “01” or “10”
substrings

(1) Using the “01” substring, one
additional 0 can be added

(1) Using the “10” substring, one
additional 1 can be added

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

Step 3: Write out the expression with the two cases we found

Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any

consecutive 0’s or 1’s.

((01)∗ (0 ∪ ε)) ∪ ((10)∗ (1 ∪ ε))

Step 3: Write out the expression with the two cases we found

e) Write a regular expression that matches all binary strings of the form 1ky
where k ≥ 1 and y ∈ {0, 1}* has at least k 1’s.

Problem 1 – Regular Expressions

Problem 1 – Regular Expressions

1(0 ∪ 1)∗ 1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s
there are, it turns out that we don’t. Convince yourself that strings in the
language are exactly those of the form 1x, where x is any binary string with at
least one 1. Hence, x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)
∗

e) Write a regular expression that matches all binary strings of the form 1ky
where k ≥ 1 and y ∈ {0, 1}* has at least k 1’s.

Context-Free Grammars

Context-Free Grammars
A context free grammar (CFG) is a finite set of production rules
over:
● An alphabet Σ of “terminal symbols”
● A finite set 𝑉 of “nonterminal symbols”
● A start symbol (one of the elements of 𝑉) usually denoted 𝑆

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form
● 𝐴 → 𝑤1 | 𝑤2 | … |𝑤𝑘

Where each 𝑤𝑖 ∈ 𝑉 ∪ Σ* is a string of nonterminals and
terminals.

Problem 2 – CFGs
Write a context-free grammar to match each of these languages.

a) All binary strings that start with 11.

b) All binary strings that contain at most one 1.

c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

Work on this problem with the people around you.

Problem 2 – CFGs
a) All binary strings that start with 11.

Problem 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

Problem 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Problem 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Now generate the CFG…

Problem 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Now generate the CFG…

S → 11T
T → 1T | 0T | ε

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Problem 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Alternative solution:

S → 0S | S0| 1 | 0 | ε

Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

S → 01S | 10S | 0S1 | 1S0 | S01 | S10 | 2

Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

S → 01S | 10S | 0S1 | 1S0 | S01 | S10 | 2
Counter example: 00112

Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2.

S → 01S | 10S | 0S1 | 1S0 | S01 | S10 | 2
Counter example: 00112

Instead:

S → 2 | 2T | T2 | ST | TS | 0S1 | 1S0
T → TT | 0T1 | 1T0 | ε

Deterministic Finite Automata

Deterministic Finite Automata
● A DFA is a finite-state machine that accepts or rejects a given string of symbols, by running through

a state sequence uniquely determined by the string.

● In other words:
○ Our machine is going to get a string as input. It will read one character at a time and update

“its state.”
○ At every step, the machine thinks of itself as in one of the (finite number) vertices. When it

reads the character, it follows the arrow labeled with that character to its next state.
○ Start at the “start state” (unlabeled, incoming arrow).
○ After you’ve read the last character, accept the string if and only if you’re in a “final state”

(double circle).

● Every machine is defined with respect to an alphabet Σ
● Every state has exactly one outgoing edge for every character in Σ
● There is exactly one start state; can have as many accept states (aka final states) as you want –

including none.

Problem 3 – DFAs, Stage 1
Construct DFAs to recognize each of the following languages.
Let Σ = {0, 1, 2, 3}.

a) All binary strings.

b) All strings whose digits sum to an even number.

c) All strings whose digits sum to an odd number.

Work on this problem with the people around you.

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.

a) All binary strings.

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.

a) All binary strings.

q0start q1

0,1 0,1,2,3

2,3

q0 : binary strings
q1 : strings that contain a character which is not 0 or 1

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
b) All strings whose digits sum to an even number.

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
b) All strings whose digits sum to an even number.

q0: strings whose sum of digits is even
q1: strings whose sum of digits is odd

q0start q1

0,2 0,2

1,3

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
c) All strings whose digits sum to an odd number.

Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
c) All strings whose digits sum to an odd number.

q0: strings whose sum of digits is even
q1: strings whose sum of digits is odd

q0start q1

0,2 0,2

1,3

1,3

All The Models

Problem 9 – All The Models
Construct a valid regular expression, CFG, and DFA for the following languages.

a) All strings whose base-6 representation is divisible by 3 (leading zeros are
ok). Let Σ = {0, 1, 2, 3, 4, 5}.

b) All binary strings of 0s capped by a 1 on either side

Work on this problem with the people around you.

Problem 9 – All The Models
a) All strings whose base-6 representation is divisible by 3 (leading zeros are

ok). Let Σ = {0, 1, 2, 3, 4, 5}.

Problem 9 – All The Models
a) All strings whose base-6 representation is divisible by 3 (leading zeros are

ok). Let Σ = {0, 1, 2, 3, 4, 5}.

Regular Expression:

Problem 9 – All The Models
a) All strings whose base-6 representation is divisible by 3 (leading zeros are

ok). Let Σ = {0, 1, 2, 3, 4, 5}.

Regular Expression:

CFG:

Problem 9 – All The Models
a) All strings whose base-6 representation is divisible by 3 (leading zeros are

ok). Let Σ = {0, 1, 2, 3, 4, 5}.

Regular Expression:

CFG:

DFA:

Problem 9 – All The Models
b) All binary strings of 0s capped by a 1 on either side

Problem 9 – All The Models
b) All binary strings of 0s capped by a 1 on either side

Binary strings, therefore Σ = {0, 1}.

Problem 9 – All The Models
b) All binary strings of 0s capped by a 1 on either side

Binary strings, therefore Σ = {0, 1}.

Regular Expression:

Problem 9 – All The Models
b) All binary strings of 0s capped by a 1 on either side

Binary strings, therefore Σ = {0, 1}.

Regular Expression:

Context-Free Grammar:

Problem 9 – All The Models
b) All binary strings of 0s capped by a 1 on either side

Binary strings, therefore Σ = {0, 1}.

Regular Expression:

Context-Free Grammar:

Deterministic Finite Automata:

Problem 9 – All The Models
b) All binary strings of 0s capped by a 1 on either side

Binary strings, therefore Σ = {0, 1}.

Regular Expression:

Context-Free Grammar:

Deterministic Finite Automata:

What if we made
the problem more
complex?

All binary strings of
0s capped by a
111000111 on
either side

Problem 9 – All The Models
b) All binary strings of 0s capped by a 111000111 on either side

Binary strings, therefore Σ = {0, 1}.

Regular Expression:

Context-Free Grammar:

Deterministic Finite Automata:

Problem 9 – All The Models
b) All binary strings of 0s capped by a 111000111 on either side

Binary strings, therefore Σ = {0, 1}.

Regular Expression:

Context-Free Grammar:

Deterministic Finite Automata: Just like RE and
CFG, what
structure can we
replace with
complexity?

Problem 9 – All The Models
b) All binary strings of 0s capped by a 111000111 on either side

Deterministic Finite Automata:

Problem 9 – All The Models
b) All binary strings of 0s capped by a 111000111 on either side

Deterministic Finite Automata:

Problem 9 – All The Models
b) All binary strings of 0s capped by a 111000111 on either side

Deterministic Finite Automata:
What structure can
we replace with
complexity?

At most n 0s?

Problem 9 – All The Models
b) All binary strings of 0s capped by a 111000111 on either side

Takeaway: start with top level
structure, fill in finegrained details
(like circuits)

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

Nondeterministic Finite Automata

Nondeterministic Finite Automata
● Similar to DFAs, but with less restrictions.

○ From a given state, we’ll allow any number of outgoing edges labeled with a
given character. (In a DFA, we have only 1 outgoing edge labeled with each
character).

○ The machine can follow any of them.
○ We’ll have edges labeled with “𝜀” – the machine (optionally) can follow one of

those without reading another character from the input.
○ If we “get stuck” i.e. the next character is 𝑎 and there’s no transition leaving

our state labeled 𝑎, the computation dies.

● An NFA still has exactly one start state and any number of final states.
● The NFA accepts 𝑥 if there is some path from a start state to a final state labeled

with 𝑥.
● From a state, you can have 0,1, or many outgoing arrows labeled with a single

character. You can choose any of them to build the required path.

Problem 5 – NFAs
a) What language does the following NFA accept?

b) Create an NFA for the language “all binary strings that have a 1 as one of the
last three digits”.

Work on this problem with the people around you.

q0start

q3 0

0

q1 q2

2

0ε

ε 1

Problem 5 – NFAs
a) What language does the following NFA accept?

q0start

q3 0

0

q1 q2

2

0ε

ε 1

Problem 5 – NFAs
a) What language does the following NFA accept?

q0start

q3 0

0

q1 q2

2

0ε

ε 1

All strings of only 0’s and 1’s, not containing more than one 1.

Problem 5 – NFAs
b) Create an NFA for the language “all binary strings that have a 1 as one of the

last three digits”.

Problem 5 – NFAs
b) Create an NFA for the language “all binary strings that have a 1 as one of the

last three digits”.

q0start

0,1

1 q1 q2 q3
0,1 0,1

Recursively Defined Sets

Recursive Definition of Sets
Define a set 𝑆 as follows:

Basis Step:
Describe the basic starting elements in your set
ex: 0 ∈ 𝑆

Recursive Step:
Describe how to derive new elements of the set from previous elements
ex: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.

Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a
finite number of recursive steps starting from a basis step.

