
CSE 311 Section 08

Induction, Recursively Defined Sets, and 
One-to-One and Onto



Administrivia



Announcements & Reminders
● Midterm

○ Please don’t talk about the midterm!! Not everyone has taken it yet ☺

● HW6 Regrade Requests
○ Regrade request window open as usual
○ If something was graded incorrectly, submit a regrade request

● HW7
○ Due Friday 11/22 @ 11:59pm  (note the unusual day!)
○ Late due date Monday 11/25 @ 11:59 PM 



Recursively Defined Sets



Recursive Definition of Sets
Define a set 𝑆 as follows:

Basis Step: 
Describe the basic starting elements in your set
ex: 0 ∈ 𝑆

Recursive Step: 
Describe how to derive new elements of the set from previous elements
ex: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.

Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a
finite number of recursive steps starting from a basis step.



Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

b)     Binary strings not containing 10.

c)     Binary strings not containing 10 as a substring and having at least as many 
1s as 0s.

d)      Binary strings containing at most two 0s and at most two 1s.

Work on this problem with the people around you.
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Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

Generate accepted and rejected strings first! 

Accepted Strings Rejected Strings

ε 0

11 1

10101010 1010101

10101011 010101011

Step 2: Find a pattern! Step 1: Write out basic cases and more intricate cases

All even-length strings can be 
generated from a series of 
substrings of length 2!

All possible substrings of 
length 2 are: 
10, 01, 11, 00
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a) Binary strings of even length.
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strings with the recursive step



Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

a) Binary strings of even length.

 

Accepted Strings Rejected Strings

ε 0

11 1

10101010 1010101

10101011 010101011

Step 3: Write out Basis and Recursive step
Step 4: check that you cannot build the 
rejected strings and only build accepted 
strings with the recursive step
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For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Accepted Strings Rejected Strings

1 010

0 10

ε 100

111

00001

1110

100001

Step 1: Write out basic cases and more intricate cases



Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.
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Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

b) Binary strings not containing 10.

Accepted Strings Rejected Strings

1 010

0 10

ε 100

111

00001

1110

100001

Step 1: Write out basic cases and more intricate cases Step 2: Find a pattern! 

0’s and 1’s cannot be in the same string 
unless 0’s come first and 1’s come 
second

0’s should be built from the left (0x)  
1’s should be built from the right (x1)

such strings that have 1’s and 0’s can 
only look like: 000…1111
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b) Binary strings not containing 10.
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Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s 
as 0s.

Step 1: Write out basic cases and more intricate cases

Accepted Strings Rejected Strings

1 010

01 0

ε 100

111

00001111

1110

00001



Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s 
as 0s.

Step 1: Write out basic cases and more intricate cases

Accepted Strings Rejected Strings

1 010

01 0
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00001111
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Step 2: Find a pattern! 



Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s 
as 0s.

Step 1: Write out basic cases and more intricate cases

Accepted Strings Rejected Strings

1 010

01 0

ε 100

111

00001111

1110

00001

Step 2: Find a pattern! 

From part (b) we know:
0’s should be built from the left (0x)  
1’s should be built from the right (x1)

New restriction for adding a 0: 
for every 0 we add, there must be at 
least an additional 1 accompanying it so 
we always have # 1’s ≥ # 0’s 

So lets change: 0x to 0x1



Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s 
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Step 3: Write out Basis and Recursive step



Problem 1 – Recursively Defined Sets
For each of the following, write a recursive definition of the sets satisfying the 
following properties. Briefly justify that your solution is correct.

c) Binary strings not containing 10 as a substring and having at least as many 1s 
as 0s.

 

Step 3: Write out Basis and Recursive step

Step 4: check that you cannot build the 
rejected strings and only build accepted 
strings with the recursive step :)



Structural Induction



Idea of Structural Induction
Every element is built up recursively…

So to show 𝑃(𝑠) for all 𝑠 ∈ 𝑆…

Show 𝑃(𝑏) for all base case elements 𝑏.

Show for an arbitrary element not in the base case, if 𝑃() holds for every 
named element in the recursive rule, then 𝑃() holds for the new element 
(each recursive rule will be a case of this proof).



Structural Induction Template
Let 𝑃(𝑥) be “<predicate>”. We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Case: Show 𝑃(𝑥) 
[Do that for every base cases 𝑥 in 𝑆.]

Inductive Hypothesis: Suppose 𝑃(𝑥) for an arbitrary x
[Do that for every 𝑥 listed as in 𝑆 in the recursive rules.]

Inductive Step: Show 𝑃() holds for 𝑦.
[You will need a separate case/step for every recursive rule.]

Therefore 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by the principle of induction.



Problem 2b – Structural Induction on Trees

Prove that leaves(T) ≥ size(T)/2 + 1/2 for all Trees T

Work on this problem with the people around you.

Definition of Tree:
Basis Step: • is a Tree. 
Recursive Step: If L is a Tree and R is a Tree then Tree(•, L, R) is a Tree

Definition of leaves():
leaves(•) = 1 
leaves(Tree(•, L, R)) = leaves(L) + leaves(R)

Definition of size():
size(•) = 1 
size(Tree(•, L, R)) =1 + size(L) + size(R)



Problem 2b – Structural Induction on 
Trees
For x ∈ S, let P(x) be “”.
We show P(x) holds for all x ∈ S by structural induction on x.

Base Case: Show P(x) (for all x in the basis rules)

Inductive Hypothesis:  Suppose P(x) (for all x in the recursive rules), 
i.e. (IH in terms of P(x))

Inductive Step: Goal: Show that P(?) holds. (IS goal in terms of P(?))

Conclusion: Therefore P(x) holds for all x ∈ S by the principle of induction.

Prove that 
leaves(T) ≥ size(T)/2 + 
1/2 for all Trees T
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We show P(T) holds for all trees T by structural induction on T.
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So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.
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Problem 2b – Structural Induction on 
Trees
For a tree T, let P(T) be “leaves(T) ≥ size(T)/2 + 1/2”.
We show P(T) holds for all trees T by structural induction on T.

Base Case: P(•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. 
So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis:  Suppose P(L) and P(R) hold for some arbitrary trees L and R,
i.e., leaves(L) ≥ size(L)/2 + 1/2, leaves(R) ≥ size(R)/2 + 1/2

Inductive Step: Goal: Show P(Tree(•, L, R)): leaves(Tree(•, L, R)) ≥ size(Tree(•, L, R))/2 + 1/2

Conclusion: Therefore P(T) holds for all trees T by the principle of induction.

Prove that 
leaves(T) ≥ size(T)/2 + 
1/2 for all Trees T

Again, as long as you can get this far, you will get the majority of 
points on the problem! Go for this skeleton first, and then think 
about what you need to do to complete the proof.
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For a tree T, let P(T) be “leaves(T) ≥ size(T)/2 + 1/2”.
We show P(T) holds for all trees T by structural induction on T.

Base Case: P(•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. 
So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.
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Inductive Step: Goal: Show P(Tree(•, L, R)): leaves(Tree(•, L, R)) ≥ size(Tree(•, L, R))/2 + 1/2
leaves(Tree(•, L, R)) = 
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Problem 2b – Structural Induction on 
Trees
For a tree T, let P(T) be “leaves(T) ≥ size(T)/2 + 1/2”.
We show P(T) holds for all trees T by structural induction on T.

Base Case: P(•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. 
So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis:  Suppose P(L) and P(R) hold for some arbitrary trees L and R,
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Problem 2b – Structural Induction on 
Trees
For a tree T, let P(T) be “leaves(T) ≥ size(T)/2 + 1/2”.
We show P(T) holds for all trees T by structural induction on T.

Base Case: P(•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. 
So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis:  Suppose P(L) and P(R) hold for some arbitrary trees L and R,
i.e., leaves(L) ≥ size(L)/2 + 1/2, leaves(R) ≥ size(R)/2 + 1/2

Inductive Step: Goal: Show P(Tree(•, L, R)): leaves(Tree(•, L, R)) ≥ size(Tree(•, L, R))/2 + 1/2
leaves(Tree(•, L, R)) = leaves(L) + leaves(R) definition of leaves

       ≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) by Inductive Hypothesis
 
 
 

Conclusion: Therefore P(T) holds for all trees T by the principle of induction.

Prove that 
leaves(T) ≥ size(T)/2 + 
1/2 for all Trees T



Problem 2b – Structural Induction on 
Trees
For a tree T, let P(T) be “leaves(T) ≥ size(T)/2 + 1/2”.
We show P(T) holds for all trees T by structural induction on T.

Base Case: P(•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. 
So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis:  Suppose P(L) and P(R) hold for some arbitrary trees L and R,
i.e., leaves(L) ≥ size(L)/2 + 1/2, leaves(R) ≥ size(R)/2 + 1/2

Inductive Step: Goal: Show P(Tree(•, L, R)): leaves(Tree(•, L, R)) ≥ size(Tree(•, L, R))/2 + 1/2
leaves(Tree(•, L, R)) = leaves(L) + leaves(R) definition of leaves

       ≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) by Inductive Hypothesis
       = (1/2 + size(L)/2 + size(R)/2) + 1/2
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Problem 2b – Structural Induction on 
Trees
For a tree T, let P(T) be “leaves(T) ≥ size(T)/2 + 1/2”.
We show P(T) holds for all trees T by structural induction on T.

Base Case: P(•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. 
So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis:  Suppose P(L) and P(R) hold for some arbitrary trees L and R,
i.e., leaves(L) ≥ size(L)/2 + 1/2, leaves(R) ≥ size(R)/2 + 1/2

Inductive Step: Goal: Show P(Tree(•, L, R)): leaves(Tree(•, L, R)) ≥ size(Tree(•, L, R))/2 + 1/2
leaves(Tree(•, L, R)) = leaves(L) + leaves(R) definition of leaves

       ≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) by Inductive Hypothesis
       = (1/2 + size(L)/2 + size(R)/2) + 1/2
       = (1 + size(L) + size(R)) / 2 + 1/2

 

Conclusion: Therefore P(T) holds for all trees T by the principle of induction.

Prove that 
leaves(T) ≥ size(T)/2 + 
1/2 for all Trees T



Problem 2b – Structural Induction on 
Trees
For a tree T, let P(T) be “leaves(T) ≥ size(T)/2 + 1/2”.
We show P(T) holds for all trees T by structural induction on T.

Base Case: P(•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. 
So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis:  Suppose P(L) and P(R) hold for some arbitrary trees L and R,
i.e., leaves(L) ≥ size(L)/2 + 1/2, leaves(R) ≥ size(R)/2 + 1/2

Inductive Step: Goal: Show P(Tree(•, L, R)): leaves(Tree(•, L, R)) ≥ size(Tree(•, L, R))/2 + 1/2
leaves(Tree(•, L, R)) = leaves(L) + leaves(R) definition of leaves

       ≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) by Inductive Hypothesis
       = (1/2 + size(L)/2 + size(R)/2) + 1/2
       = (1 + size(L) + size(R)) / 2 + 1/2

        = size(T)/2 + 1/2 definition of size

Conclusion: Therefore P(T) holds for all trees T by the principle of induction.

Prove that 
leaves(T) ≥ size(T)/2 + 
1/2 for all Trees T



Problem 2b – Structural Induction on 
Trees
For a tree T, let P(T) be “leaves(T) ≥ size(T)/2 + 1/2”.
We show P(T) holds for all trees T by structural induction on T.

Base Case: P(•): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. 
So, leaves(•) = 1 ≥ 1/2 + 1/2 = size(•)/2 + 1/2, so P(•) holds.

Inductive Hypothesis:  Suppose P(L) and P(R) hold for some arbitrary trees L and R,
i.e., leaves(L) ≥ size(L)/2 + 1/2, leaves(R) ≥ size(R)/2 + 1/2

Inductive Step: Goal: Show P(Tree(•, L, R)): leaves(Tree(•, L, R)) ≥ size(Tree(•, L, R))/2 + 1/2
leaves(Tree(•, L, R)) = leaves(L) + leaves(R) definition of leaves

       ≥ (size(L)/2 + 1/2) + (size(R)/2 + 1/2) by Inductive Hypothesis
       = (1/2 + size(L)/2 + size(R)/2) + 1/2
       = (1 + size(L) + size(R)) / 2 + 1/2

        = size(T)/2 + 1/2 definition of size
So, P(Tree(•, L, R)) holds! 
Conclusion: Therefore P(T) holds for all trees T by the principle of induction.

Prove that 
leaves(T) ≥ size(T)/2 + 
1/2 for all Trees T



Problem 2a - Structural Induction on 
Strings

Prove that for any string X, len(double(X)) = 2len(X).

Definition of string:
Basis Step: "" is a string. 
Recursive Step: If X is a string and c is a character then append(c, X) is a 
string.

Definition of len():
len("") = 0 
len(append(c, X)) = 1 + 
len(X)

Definition of double():
double("") = "" 
double(append(c, X)) = append(c, append(c, 
double(X)))
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Inductive Step: Goal: Show that P(?) holds. (IS goal in terms of P(?))

Conclusion: Therefore P(x) holds for all x ∈ S by structural induction.
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For a string X, let P(X) be “len(double(X)) = 2len(X)”. 
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For a string X, let P(X) be “len(double(X)) = 2len(X)”. 
We prove P(X) for all strings X by structural induction on X
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For a string X, let P(X) be “len(double(X)) = 2len(X)”. 
We prove P(X) for all strings X by structural induction on X

Base Case: P(""): By definition, len(double("")) = len("") = 0 = 2 · 0 = 2len(""), so P("") holds

Inductive Hypothesis:  Suppose P(X) holds for some arbitrary string X,
i.e. len(double(X)) = 2len(X)

Inductive Step: Goal: Show P(append(c, X)) for any c: len(double(append(c, X))) = 2(len(append(c, 
X)))

len(double(append(c, X))) = len(append(c, append(c, double(X)))) definition of double
         = 1 + len(append(c, double(X))) definition of len 
         = 1 + 1 + len(double(X)) definition of len
         = 2 + 2len(X) by I.H.
         = 2(1 + len(X))
         = 2(len(append(c, X))) definition of len

So, P(append(c, X)) holds! 

Conclusion: Therefore P(X) holds for all strings X by structural induction.

Problem 2a - Structural Induction on 
Strings

Prove that for any string 
X, 
len(double(X)) = 2len(X)
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Review of function definitions
Match the definition to the description! (One to one, onto or bijective?)

Onto function
Every element of the codomain 
has at least one element in the 
domain mapping to it

One to one function
Every element of the codomain 
has at most one element in the 
domain mapping to it

Bijection
Every element of the codomain 
has exactly one element in the 
domain mapping to it
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For each of these functions, state whether it is one-to-one, onto, both, or neither.



That’s All, Folks!

Thanks for coming to section this week!
Any questions?



Problem 8 – One-to-One and Onto
For each of these functions, state whether it is one-to-one, onto, both, or neither.

For this domain and co-domain, the function is both one-to-one and onto.



Structural Induction



Idea of Structural Induction
Every element is built up recursively…

So to show 𝑃(𝑠) for all 𝑠 ∈ 𝑆…

Show 𝑃(𝑏) for all base case elements 𝑏.

Show for an arbitrary element not in the base case, if 𝑃() holds for every 
named element in the recursive rule, then 𝑃() holds for the new element 
(each recursive rule will be a case of this proof).



Structural Induction Template
Let 𝑃(𝑥) be “<predicate>”. We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Case: Show 𝑃(𝑥) 
[Do that for every base cases 𝑥 in 𝑆.]

Inductive Hypothesis: Suppose 𝑃(𝑥)
[Do that for every 𝑥 listed as in 𝑆 in the recursive rules.]

Inductive Step: Show 𝑃() holds for 𝑦.
[You will need a separate case/step for every recursive rule.]

Therefore 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by the principle of induction.



Problem 2b – Structural Induction on Trees

Prove that leaves(T) ≥ size(T)/2 + 1/2 for all Trees T

Work on this problem with the people around you.

Definition of Tree:
Basis Step: • is a Tree. 
Recursive Step: If L is a Tree and R is a Tree then Tree(•, L, R) is a Tree

Definition of leaves():
leaves(•) = 1 
leaves(Tree(•, L, R)) = leaves(L) + leaves(R)

Definition of size():
size(•) = 1 
size(Tree(•, L, R)) =1 + size(L) + size(R)



Problem 2b – Structural Induction on Trees
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Problem 2a – Structural Induction on Strings

Prove that for any string X, len(double(X)) = 2len(X).

Work on this problem with the people around you.

Definition of string:
Basis Step: "" is a string. 
Recursive Step: If X is a string and c is a character then append(c, X) is a string.

Definition of len():
len("") = 0 
len(append(c, X)) = 1 + len(X)

Definition of double():
double("") = "" 
double(append(c, X)) = append(c, append(c, 
double(X)))



Problem 2a – Structural Induction on Strings
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Regular Expressions



Regular Expressions
Basis: 
• 𝜀 is a regular expression. The empty string itself matches the pattern 

(and nothing else does). 
• ∅ is a regular expression. No strings match this pattern. 
• 𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The 

character itself matching this pattern. 
Recursive: 
• If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression. 

matched by any string that matches 𝐴 or that matches 𝐵 [or both]). 
• If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression. 

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵. 
• If 𝐴 is a regular expression, then 𝐴∗ is a regular expression. matched 

by any string that can be divided into 0 or more strings that match 𝐴.



Regular Expressions
A regular expression is a recursively defined set of strings that form a 
language.

A regular expression will generate all strings in a language, and won’t 
generate any strings that ARE NOT in the language

Hints:
• Come up with a few examples of strings that ARE and ARE NOT in 

your language
• Then, after you write your regex, check to make sure that it CAN 

generate all of your examples that are in the language, and it CAN’T 
generate those that are not



Problem 1 – Regular Expressions
 

Work on this problem with the people around you.



Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should 

be no leading zeroes).

base-10 numbers: 
Our everyday numbers! 
Notice we have 10 symbols 
(0-9) to represent numbers.

256: (2 * 102 ) + (5 * 101) + (6 * 100)

base-2 numbers: (binary) 

10: (1 * 21) + (0 * 20) 
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Representing numbers all possible strings using numbers 0-9: 
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Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible 

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3 

Hint: you know that Base-10 numbers are divisible by 10 when they end in 0 (10, 20, 30, 40…)

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)
✅all possible Base-3 numbers divisible by 3



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠  The Kleene-star has us generating any number of 0’s



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠  The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s 



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠  The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s 

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)*



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠  The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s 

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠  Cannot produce 1’s with “0” or “00” like “1011101”



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠  The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s 

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠  Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠  The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s 

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠  Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* ⚠  Generates “000” like “00 01 111”



Problem 1 – Regular Expressions
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all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠  The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s 

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠  Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* ⚠  Generates “000” like “00 01 111”
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Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* 

…without the substring “000”

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)*

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)

⚠  The Kleene-star has us generating any number of 0’s

Use careful case-work to modify this and produce only 0,1,or two 0’s 

⚠  Cannot produce 1’s with “0” or “00” like “1011101”

⚠  Generates “000” like “00 01 111”

✅ all binary strings with “111” and without “000”

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)
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ε 00

1 11

10101 101011

0101 0100
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Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any 

consecutive 0’s or 1’s.

Accepted Strings Rejected Strings

ε 00

1 11

10101 101011

0101 0100

Step 1: Write out basic and more intricate cases Step 2: Find a pattern! 

strings can be generated from 
either a series of “01” or “10” 
substrings

(1) Using the “01” substring, one 
additional 0 can be added

(1) Using the “10” substring, one 
additional 1 can be added
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Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any 

consecutive 0’s or 1’s.

((01)∗ (0 ∪ ε)) ∪ ((10)∗ (1 ∪ ε))

Step 3: Write out the expression with the two cases we found
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1(0 ∪ 1)∗ 1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s 
there are, it turns out that we don’t. Convince yourself that strings in the 
language are exactly those of the form 1x, where x is any binary string with at 
least one 1. Hence, x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)
∗


