CSE 311 Section 6

Induction

Administrivia

Announcements & Reminders

- HW4
 - Grades out now
 - If you think something was graded incorrectly, submit a regrade request!
- HW5
 - due yesterday (10/30 @ 11:59 pm)
- HW6
 - o due 11/06 @ 11:59 pm on Gradescope
- Midterm is COMING!!!
 - Wednesday 11/13 @ 6-7:30 pm in PAA
 - More information coming soon!

Induction

(Weak) Induction Template

Let P(n) be "(whatever you're trying to prove)".

We show P(n) holds for all n by induction on n.

Base Case: Show P(b) is true.

<u>Inductive Hypothesis:</u> Suppose P(k) holds for an arbitrary $k \geq b$.

<u>Inductive Step:</u> Show P(k + 1) (i.e. get $P(k) \rightarrow P(k + 1)$)

(Weak) Induction Template

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds **for all** n by induction on n. Note: often you will condition n here, like "all natural numbers n" or " $n \ge 0$ "

Base Case: Show P(b) is true.

<u>Inductive Hypothesis:</u> Suppose P(k) holds for an arbitrary $k \geq b$.

<u>Inductive Step:</u> Show P(k + 1) (i.e. get $P(k) \rightarrow P(k + 1)$)

<u>Conclusion</u>: Therefore, P(n) holds for all n by the principle of induction.

Match the earlier condition on *n* in your conclusion!

- a) Show using induction that $0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
- b) Define the triangle numbers as $\triangle_n = 1 + 2 + \dots + n$, where $n \in \mathbb{N}$. In part (a) we showed $\triangle_n = \frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$: $0^3 + 1^3 + \dots + n^3 = \triangle_n^2$

Lets walk through part (a) together.

We can "fill in" our induction template to construct our proof by induction.

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let P(n) be "". We show P(n) holds for (some) n by induction on n.

Base Case: P(b):

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \ge b$.

Inductive Step: Goal: Show P(k + 1):

<u>Conclusion:</u> Therefore, P(n) holds for (some) n by the principle of induction.

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let P(n) be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show P(n) holds for all $n\in\mathbb{N}$ by induction on n.

Base Case: P(b):

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \geq b$.

<u>Inductive Step:</u> Goal: Show P(k + 1):

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let P(n) be " $0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ ". We show P(n) holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: P(0): $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \geq b$.

Inductive Step: Goal: Show P(k + 1):

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let P(n) be " $0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ ". We show P(n) holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: P(0): $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \ge 0$, i.e. $0 + 1 + 2 + \dots + k = \frac{k(k+1)}{2}$ Inductive Step: Goal: Show P(k+1):

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let P(n) be " $0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ ". We show P(n) holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: P(0): $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \ge 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show $P(k + 1): 0 + 1 + \dots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let P(n) be " $0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ ". We show P(n) holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: P(0): $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \ge 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show $P(k + 1): 0 + 1 + \dots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$

$$0 + 1 + \cdots + k + (k + 1) = \cdots$$

...

$$=\frac{(k+1)(k+2)}{2}$$

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let P(n) be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show P(n) holds for all $n\in\mathbb{N}$ by induction on n.

Base Case: P(0): $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \ge 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show $P(k + 1): 0 + 1 + \dots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$

$$0 + 1 + \dots + k + (k + 1) = (0 + 1 + \dots + k) + (k + 1)$$

...

$$=\frac{(k+1)(k+2)}{2}$$

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let
$$P(n)$$
 be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show $P(n)$ holds for all $n\in\mathbb{N}$ by induction on n .

Base Case:
$$P(0)$$
: $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose
$$P(k)$$
 holds for an arbitrary $k \ge 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show
$$P(k + 1): 0 + 1 + \dots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$$

$$0+1+\cdots+k+(k+1)=(0+1+\cdots+k)+(k+1)$$

$$=\frac{k(k+1)}{2}+(k+1)$$
 by I.H.

...

$$=\frac{(k+1)(k+2)}{2}$$
?

Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.

Let
$$P(n)$$
 be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show $P(n)$ holds for all $n\in\mathbb{N}$ by induction on n .

Base Case:
$$P(0)$$
: $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose
$$P(k)$$
 holds for an arbitrary $k \ge 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show
$$P(k + 1): 0 + 1 + \dots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$$

$$0+1+\dots+k+(k+1) = (0+1+\dots+k)+(k+1)$$

$$= \frac{k(k+1)}{2}+(k+1)$$

$$= \frac{k(k+1)}{2}+\frac{2(k+1)}{2}$$
by I.H.

$$=\frac{(k+1)(k+2)}{2}$$

Show using induction that $0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2}$

for all $n \in \mathbb{N}$.

Problem 1 – Induction with Equality

Let P(n) be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show P(n) holds for all $n\in\mathbb{N}$ by induction on n.

Base Case: P(0): $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \ge 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

<u>Inductive Step:</u> Goal: Show $P(k + 1): 0 + 1 + \dots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$

$$0 + 1 + \dots + k + (k + 1) = (0 + 1 + \dots + k) + (k + 1)$$

$$= \frac{k(k+1)}{2} + (k + 1)$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$
?

Show using induction that $0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2}$

for all $n \in \mathbb{N}$.

Problem 1 – Induction with Equality

Let P(n) be " $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ ". We show P(n) holds for all $n\in\mathbb{N}$ by induction on n.

Base Case: P(0): $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for an arbitrary $k \ge 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show $P(k+1): 0+1+\cdots+k+(k+1)=\frac{(k+1)(k+2)}{2}$

$$0+1+\dots+k+(k+1) = (0+1+\dots+k)+(k+1)$$

$$= \frac{k(k+1)}{2}+(k+1)$$

$$= \frac{k(k+1)}{2}+\frac{2(k+1)}{2}$$

$$= \frac{k(k+1)+2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$
factoring

factoring out (k+1)

- a) Show using induction that $0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.
- b) Define the triangle numbers as $\triangle_n = 1 + 2 + \dots + n$, where $n \in \mathbb{N}$. In part (a) we showed $\triangle_n = \frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$0^3 + 1^3 + \dots + n^3 = \triangle_n^2$$

Strong Induction

Why Strong Induction?

In **weak induction**, the inductive hypothesis only assumes that P(k) is true and uses that in the inductive step to prove the implication $P(k) \rightarrow P(k+1)$.

In **strong induction**, the inductive hypothesis assumes the predicate holds for every step from the base case(s) up to P(k). This usually looks something like $P(b_1) \wedge P(b_2) \wedge \cdots \wedge P(k)$. Then it uses this stronger inductive hypothesis in the inductive step to prove the implication $P(b_1) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$.

Strong induction is necessary when we have multiple base cases, or when we need to go back to a smaller number than k in our inductive step.

Strong Induction Template

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all $n \ge b_{min}$ by induction on n.

Base Case: Show $P(b_{min})$, $P(b_{min+1})$, ..., $P(b_{max})$ are all true.

Inductive Hypothesis: Suppose $P(b_{min}) \land \cdots \land P(k)$ hold for an arbitrary $k \ge b_{max}$.

<u>Inductive Step:</u> Show P(k+1) (i.e. get $P(b_{min}) \land \cdots \land P(k) \rightarrow P(k+1)$)

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = 2f(n-1) - f(n-2)$ for $n \ge 2$

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n. That is, construct a formula for f(n) and prove its correctness.

What kind of induction should we use?

What kind of induction should we use?

Strong induction!

Two big clues:

- Multiple base cases in the formula: f(0) = 0 and f(1) = 1
- Recursively defined step of formula goes back further than just n:
 - o f(n) based on both f(n-1) and f(n-2)
 - o for P(n) to be true, both P(n-1) and P(n-2) must be true

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all $n \ge b_{min}$ by induction on n.

Base Case: Show $P(b_{min})$, $P(b_{min+1})$, ..., $P(b_{max})$ are all true.

Inductive Hypothesis: Suppose $P(b_{min}) \land \cdots \land P(k)$ hold for an arbitrary $k \ge b_{max}$.

<u>Inductive Step:</u> Show P(k+1) (i.e. get $P(b_{min}) \land \cdots \land P(k) \rightarrow P(k+1)$)

<u>Conclusion</u>: Therefore, P(n) holds for all $n \ge b_{min}$ by the principle of induction.

Fill in the strong induction template to prove the claim!

Let P(n) be "".

We show P(n) holds ...

Base Cases:

Inductive Hypothesis:

Inductive Step:

<u>Conclusion:</u> Therefore, P(n) holds for all ... by the principle of induction.

That's All, Folks!

Thanks for coming to section this week!

Any questions?