
Section 05: Solutions

1. GCD

(a) Calculate gcd(100, 50).

Solution:

50

(b) Calculate gcd(17, 31).

Solution:

1

(c) Find the multiplicative inverse of 6 (mod 7).

Solution:

6

(d) Does 49 have an multiplicative inverse (mod 7)?

Solution:

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it can never be
1.

2. Extended Euclidean Algorithm Application: Multiplicative Inverse

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y ≡ 1 (mod 33). You should use the
extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.

Solution:

First, we find the gcd:

gcd(33, 7) = gcd(7, 5) 33 = 7 • 4 + 5 (1)

= gcd(5, 2) 7 = 5 • 1 + 2 (2)

= gcd(2, 1) 5 = 2 • 2 + 1 (3)

= gcd(1, 0) 2 = 1 • 2 + 0 (4)

= 1 (5)

1

Next, we re-arrange equations (1) - (3) by solving for the remainder:

1 = 5− 2 • 2 (6)

2 = 7− 5 • 1 (7)

5 = 33− 7 • 4 (8)

(9)

Now, we backward substitute into the boxed numbers using the equations:

1 = 5− 2 • 2

= 5− (7− 5 • 1) • 2

= 3 • 5 − 7 • 2

= 3 • (33− 7 • 4)− 7 • 2
= 33 • 3 + 7 • −14

So, 1 = 33 • 3 + 7 • −14. Thus, 33− 14 = 19 is the multiplicative inverse of 7 mod 33.

(b) Now, solve 7z ≡ 2(mod 33) for all of its integer solutions z.

Solution:

We already computed that 19 is the multiplicative inverse of 7 mod 33. That is, 19 · 7 ≡ 1(mod 33).

If z is a solution to 7z ≡ 2(mod 33), then multiplying by 19 on both sides, we have 19·7·z ≡ 19·2(mod 33).

Substituting 19 · 7 ≡ 1(mod 33) into this on the left gives 1 · z ≡ z ≡ 19 · 2 ≡ 38 ≡ 5(mod 33).

This shows that every solution z is congruent to 5. In other words, the set of solutions is {5+33k | k ∈ Z}.

3. Euclid’s Lemma1

(a) Show that if an integer p divides the product of two integers a and b, and gcd(p, a) = 1, then p divides b.

Solution:

Suppose that p | ab and gcd(p, a) = 1 for integers a, b, and p. By Bezout’s theorem, since gcd(p, a) = 1,
there exist integers r and s such that

rp+ sa = 1.

Since p | ab, by the definition of divides there exists an integer k such that pk = ab.
By multiplying both sides of rp+ sa = 1 by b we have,

rpb+ s(ab) = b

rpb+ s(pk) = b

p(rb+ sk) = b

Since r, b, s, k are all integers, (rb+ sk) is also an integer. By definition we have p | b.

1these proofs aren’t much longer than proofs you’ve seen so far, but it can be a little easier to get stuck – use these as a chance to practice
how to get unstuck if you do!

2

(b) Show that if a prime p divides ab where a and b are integers, then p | a or p | b. (Hint: Use part (a))

Solution:

Suppose that p | ab for prime number p and integers a, b. There are two cases.

Case 1: gcd(p, a) = 1
In this case, p | b by part (a).

Case 2: gcd(p, a) 6= 1
In this case, p and a share a common positive factor greater than 1. But since p is prime, its only positive
factors are 1 and p, meaning gcd(p, a) = p. This says p is a factor of a, that is, p | a.

In both cases we’ve shown that p | a or p | b.

4. Modular Arithmetic

(a) Prove that if a | b and b | a, where a and b are integers, then a = b or a = −b.

Solution:

Suppose that a | b and b | a, where a, b are integers. By the definition of divides, we have a 6= 0, b 6= 0 and
b = ka, a = jb for some integers k, j. Combining these equations, we see that a = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,
1

j
= k. Note that j and k are integers, which is only

possible if j, k ∈ {1,−1}. It follows that b = −a or b = a.

(b) Prove that if n | m, where n and m are integers greater than 1, and if a ≡ b (mod m), where a and b are
integers, then a ≡ b (mod n).

Solution:

Suppose n | m with n,m > 1, and a ≡ b (mod m). By definition of divides, we have m = kn for some
k ∈ Z. By definition of congruence, we have m | a − b, which means that a − b = mj for some j ∈ Z.
Combining the two equations, we see that a − b = (knj) = n(kj). By definition of congruence, we have
a ≡ b (mod n), as required.

5. Prime Checking

You wrote the following code, isPrime(int n) which you are confident returns true if and only if n is prime (we
assume its input is always positive).

public boolean isPrime(int n) {

int potentialDiv = 2;

while (potentialDiv < n) {

if (n % potentialDiv == 0)

return false;

potentialDiv++;

}

return true;

}

Your friend suggests replacing potentialDiv < n with potentialDiv <= Math.sqrt(n). In this problem, you’ll
argue the change is ok. That is, your method still produces the correct result if n is a positive integer.

3

We will use “nontrivial divisor” to mean a factor that isn’t 1 or the number itself. Formally, a positive integer k
being a “nontrivial divisor” of n means that k|n, k 6= 1 and k 6= n.
Claim: For every positive integer n, if n has a nontrivial divisor, then it has a nontrivial divisor at most

√
n.

(a) Let’s try to break down the claim and understand it through examples. Show an example (a specific n and k)
of a nontrivial divisor, of a divisor that is not nontrivial, and of a number with only trivial divisors. Solution:

Some examples of ”trivial” divisors: (1 of 15), (3 of 3)
Some examples of nontrivial divisors: (3 of 15), (9 of 81)
A number with only trivial divisor is just a prime number: it has no factors.

(b) Prove the claim. Hint: we recommend a proof by contradiction. Solution:

(proof by contradiction): Suppose, for the sake of contradiction, that there is an n such that n has a
non-trivial divisor and all its nontrivial divisors are greater than

√
n.

Let k be a nontrivial divisor of n. Since k is a divisor, n = kc for some integer c. Observe that c is also
nontrivial, since if c were 1 or n then k would have to be n or 1.

Since both k and n are non-trivial divisors, we have that k >
√
n and c >

√
n. Then kc >

√
n
√
n = n. But

by assumption we have kc = n, so this is a contradiction. Thus we conclude our original claim—that if a
positive integer n has a nontrivial divisor, then it has a nontrivial divisor at most

√
n—is true.

(alternative proof): Let k be a nontrivial divisor of n. Since k is a divisor, n = kc for some integer c.
Observe that c is also nontrivial, since if c were 1 or n then k would have to be n or 1.

We now have two cases:

Case 1: k ≤
√
n

If k ≤
√
n, then we’re done because k is the desired nontrivial divisor.

Case 2: k >
√
n

If k >
√
n, then multiplying both sides by c we get ck > c

√
n. But ck = n so n > c

√
n. Finally, dividing

both sides by
√
n gives

√
n > c, so c is the desired nontrivial factor.

In both cases we find a nontrivial divisor at most
√
n, as required.

(c) Informally explain why the fact about integers proved in (b) lets you change the code safely.

Solution:

The new code makes a subset of “checks” that the old code makes, thus the only concern would be that a
non-prime number we found in the later checks would “slip through” without the extra checks. However,
if a number has any nontrivial divisor, it will have one that is ≤

√
n, so even if we exit the loop early after√

n instead of n checks, our method is still guaranteed to always work.

4

	1 GCD
	2 Extended Euclidean Algorithm Application: Multiplicative Inverse
	3 Euclid's Lemmathese proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck – use these as a chance to practice how to get unstuck if you do!
	4 Modular Arithmetic
	5 Prime Checking

