
CSE 311 Section 5

Number Theory

Administrivia

Announcements & Reminders
● HW3

○ If you think something was graded incorrectly, submit a regrade request!

● HW4 was due yesterday
○ Use late days if you need them!

● HW5
○ Due next week on Oct 30th at 11:59PM on Gradescope

Greatest Common Divisor

Some Definitions

Problem 1 – Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

Try this problem with the people around you, and then we’ll go over it together!

Problem 1 – Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 – Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

50

Problem 1 – Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

50

1

Problem 1 – Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

50

1

6

Problem 1 – Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

50

1

6

It does not. Intuitively, this is because 49x for any x is going to be 0
mod 7, which means it can never be 1.

Extended Euclidean Algorithm

Finding GCD
 public int GCD(int m, int n){

if(m<n){
int temp = m;
m=n;
n=temp;

}
while(n != 0) {

int rem = m % n;
m=n;
n=temp;

}
return m;

}

Euclid’s Algorithm

gcd(660,126)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)

Euclid’s Algorithm
gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
= 6

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
= 6

Bézout’s Theorem

Extended Euclidean Algorithm

Extended Euclidean Algorithm

gcd(35,27)

Extended Euclidean Algorithm

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)

Extended Euclidean Algorithm

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)
= gcd(8, 27%8) = gcd(8, 3)

Extended Euclidean Algorithm

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)
= gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)

Extended Euclidean Algorithm

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)
= gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)
 = gcd(2, 3%2) = gcd(2,1)

Extended Euclidean Algorithm

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)
= gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)
 = gcd(2, 3%2) = gcd(2,1)
 = gcd(1, 2%1) = gcd(1,0)

Extended Euclidean Algorithm

35 = 1∙27 + 8
27 = 3∙8 + 3
8 = 2∙3 + 2
3 = 1∙2 + 1

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)
= gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)
 = gcd(2, 3%2) = gcd(2,1)
 = gcd(1, 2%1) = gcd(1,0)

Extended Euclidean Algorithm

35 = 1∙27 + 8
27 = 3∙8 + 3
8 = 2∙3 + 2
3 = 1∙2 + 1

Extended Euclidean Algorithm

35 = 1∙27 + 8
27 = 3∙8 + 3
8 = 2∙3 + 2
3 = 1∙2 + 1

8 = 35 - 1∙27

Extended Euclidean Algorithm

35 = 1∙27 + 8
27 = 3∙8 + 3
8 = 2∙3 + 2
3 = 1∙2 + 1

8 = 35 - 1∙27
3 = 27 - 3∙8

Extended Euclidean Algorithm

35 = 1∙27 + 8
27 = 3∙8 + 3
8 = 2∙3 + 2
3 = 1∙2 + 1

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3

Extended Euclidean Algorithm

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

35 = 1∙27 + 8
27 = 3∙8 + 3
8 = 2∙3 + 2
3 = 1∙2 + 1

Extended Euclidean Algorithm

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Extended Euclidean Algorithm

1 = 3 - 1∙2

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Extended Euclidean Algorithm

1 = 3 - 1∙2
 = 3 - 1∙(8 - 2∙3)

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Extended Euclidean Algorithm

1 = 3 - 1∙2
 = 3 - 1∙(8 - 2∙3)
 = -1∙8 + 3∙3

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Extended Euclidean Algorithm

1 = 3 - 1∙2
 = 3 - 1∙(8 - 2∙3)
 = -1∙8 + 3∙3
 = -1∙8 + 3(27 - 3∙8)

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Extended Euclidean Algorithm

1 = 3 - 1∙2
 = 3 - 1∙(8 - 2∙3)
 = -1∙8 + 3∙3
 = -1∙8 + 3(27 - 3∙8)
 = 3∙27 - 10∙8

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Extended Euclidean Algorithm

1 = 3 - 1∙2
 = 3 - 1∙(8 - 2∙3)
 = -1∙8 + 3∙3
 = -1∙8 + 3(27 - 3∙8)
 = 3∙27 - 10∙8
 = 3∙27 – 10(35 - 1∙27)

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Extended Euclidean Algorithm

1 = 3 - 1∙2
 = 3 - 1∙(8 - 2∙3)
 = -1∙8 + 3∙3
 = -1∙8 + 3(27 - 3∙8)
 = 3∙27 - 10∙8
 = 3∙27 – 10(35 - 1∙27)
 = 13∙27 - 10∙35

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Extended Euclidean Algorithm

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

1 = 3 - 1∙2
 = 3 - 1∙(8 - 2∙3)
 = -1∙8 + 3∙3
 = -1∙8 + 3(27 - 3∙8)
 = 3∙27 - 10∙8
 = 3∙27 – 10(35 - 1∙27)
 = 13∙27 - 10∙35

8 = 35 - 1∙27
3 = 27 - 3∙8
2 = 8 - 2∙3
1 = 3 - 1∙2

Problem 2 – Extended Euclidean Algorithm

Try this problem with the people around you, and then we’ll go over it together!

Problem 2 – Extended Euclidean Algorithm

Problem 2 – Extended Euclidean Algorithm

First, we find the gcd:
gcd(33,7) = gcd(7,5) 33 = 4 • 7 + 5

= gcd(5,2) 7 = 1 • 5 + 2
= gcd(2,1) 5 = 2 • 2 + 1
= gcd(1,0) 2 = 2 • 1 + 0

Problem 2 – Extended Euclidean Algorithm

First, we find the gcd:
gcd(33,7) = gcd(7,5) 33 = 4 • 7 + 5

= gcd(5,2) 7 = 1 • 5 + 2
= gcd(2,1) 5 = 2 • 2 + 1
= gcd(1,0) 2 = 2 • 1 + 0

Next, we re-arrange the
equations by solving for the
remainder:
1 = 5 - 2 • 2
2 = 7 - 1 • 5
5 = 33 - 4 • 7

Problem 2 – Extended Euclidean Algorithm

Now, we backward substitute into the boxed numbers
using the equations:

1 = 5 − 2 • 2
 = 5 − 2 • (7 − 1 • 5)
 = 3 • 5 − 2 • 7
 = 3 • (33 − 4 • 7) − 2 • 7
 = 3 • 33 + −14 • 7

Next, we re-arrange the
equations by solving for the
remainder:
1 = 5 - 2 • 2
2 = 7 - 1 • 5
5 = 33 - 4 • 7

First, we find the gcd:
gcd(33,7) = gcd(7,5) 33 = 4 • 7 + 5

= gcd(5,2) 7 = 1 • 5 + 2
= gcd(2,1) 5 = 2 • 2 + 1
= gcd(1,0) 2 = 2 • 1 + 0

Problem 2 – Extended Euclidean Algorithm

So, 1 = 33 • 3 + 7 •
−14. Thus, 33 − 14 =
19 is the multiplicative
inverse of 7 mod 33

Now, we backward substitute into the boxed numbers
using the equations:

1 = 5 − 2 • 2
 = 5 − 2 • (7 − 1 • 5)
 = 3 • 5 − 2 • 7
 = 3 • (33 − 4 • 7) − 2 • 7
 = 3 • 33 + −14 • 7

First, we find the gcd:
gcd(33,7) = gcd(7,5) 33 = 4 • 7 + 5

= gcd(5,2) 7 = 1 • 5 + 2
= gcd(2,1) 5 = 2 • 2 + 1
= gcd(1,0) 2 = 2 • 1 + 0

Next, we re-arrange the
equations by solving for the
remainder:
1 = 5 - 2 • 2
2 = 7 - 1 • 5
5 = 33 - 4 • 7

Problem 2 – Extended Euclidean Algorithm

Problem 2 – Extended Euclidean Algorithm

If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33).

Problem 2 – Extended Euclidean Algorithm

If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33).

So, z ≡ 2 · 19(mod 33) ≡ 5(mod 33). This means that the set
of solutions is {5 + 33k | k ∈ Z}

Proof by Contradiction

5b: argue code is valid using contradiction

Problem 5b - Proof by Contradiction

public boolean isPrime(int n) {
int potentialDiv = 2;
while (potentialDiv < n) {

if (n % potentialDiv == 0)
return false;

potentialDiv++;
}
return true;

}
Returns true if and only if n is prime (assume n > 0).

(Given)

Problem 5b - Proof by Contradiction

public boolean isPrime(int n) {
int potentialDiv = 2;
while (potentialDiv <= Math.sqrt(n)) {

if (n % potentialDiv == 0)
return false;

potentialDiv++;
}
return true;

}
(Maybe) Returns true if and only if n is prime (assume n > 0).

(Modified)

Problem 5b - Proof by Contradiction

“nontrivial divisor”: a factor that isn’t 1 or the number itself. Formally, a positive
integer k being a “nontrivial divisor” of n means that k|n, k ≠ 1 and k ≠ n.

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Prove this with contradiction!

Problem 5b - Proof by Contradiction

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Problem 5b - Proof by Contradiction

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Problem 5b - Proof by Contradiction

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most √n

Number Theory

Bonus! :D

Some Definitions

Problem 4 – Modular Arithmetic

Lets walk through part (a) together.

Problem 4 – Modular Arithmetic

 Start with your
proof
skeleton!

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Now try part (b) with the people around you, and then we’ll go over it together!

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

NOTE: we don’t know what C will look like
yet, just that there is SOME integer here!

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

Problem 4 – Modular Arithmetic

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

