
CSE 311 Section 5

Number Theory



Administrivia



Announcements & Reminders
● HW3

○ If you think something was graded incorrectly, submit a regrade request!

● HW4 was due yesterday
○ Use late days if you need them!

● HW5
○ Due next week on Oct 30th at 11:59PM on Gradescope



Greatest Common Divisor



Some Definitions
  



Problem 1 – Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

Try this problem with the people around you, and then we’ll go over it together!
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It does not. Intuitively, this is because 49x for any x is going to be 0 
mod 7, which means it can never be 1.



Extended Euclidean Algorithm



Finding GCD
  public int GCD(int m, int n){

if(m<n){
int temp = m;
m=n;
n=temp;

}
while(n != 0) {

int rem = m % n;
m=n;
n=temp;

}
return m;

}
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Bézout’s Theorem
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First, we find the gcd: 
gcd(33,7) = gcd(7,5) 33 = 4 • 7 + 5

= gcd(5,2) 7  = 1 • 5 + 2
= gcd(2,1) 5  = 2 • 2 + 1
= gcd(1,0) 2  = 2 • 1 + 0
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So, 1 = 33 • 3 + 7 • 
−14. Thus, 33 − 14 = 
19 is the multiplicative 
inverse of 7 mod 33
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Problem 2 – Extended Euclidean Algorithm
  

If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33). 
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If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33). 

So, z ≡ 2 · 19(mod 33) ≡ 5(mod 33). This means that the set 
of solutions is {5 + 33k | k ∈ Z}



Proof by Contradiction

5b: argue code is valid using contradiction



Problem 5b - Proof by Contradiction

public boolean isPrime(int n) {
int potentialDiv = 2;
while (potentialDiv < n) {

if (n % potentialDiv == 0)
return false;

potentialDiv++;
}
return true;

}
Returns true if and only if n is prime (assume n > 0). 

(Given)



Problem 5b - Proof by Contradiction

public boolean isPrime(int n) {
int potentialDiv = 2;
while (potentialDiv <= Math.sqrt(n)) {

if (n % potentialDiv == 0)
return false;

potentialDiv++;
}
return true;

}
(Maybe) Returns true if and only if n is prime (assume n > 0). 

(Modified)



Problem 5b - Proof by Contradiction

“nontrivial divisor”: a factor that isn’t 1 or the number itself. Formally, a positive 
integer k being a “nontrivial divisor” of n means that k|n, k ≠ 1 and k ≠ n.

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a 
nontrivial divisor at most √n

Prove this with contradiction!
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Number Theory

Bonus! :D



Some Definitions
  



Problem 4 – Modular Arithmetic
  

Lets walk through part (a) together.



Problem 4 – Modular Arithmetic
  

 Start with your 
proof 
skeleton!
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Now try part (b) with the people around you, and then we’ll go over it together!
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NOTE: we don’t know what C will look like 
yet, just that there is SOME integer here!
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That’s All, Folks!

Thanks for coming to section this week!
Any questions?


