CSE 311 Section 5

Number Theory

Administrivia

Announcements & Reminders

o HWS3
o If you think something was graded incorrectly, submit a regrade request!

e HW4 was due yesterday
o Use late days if you need them!

o HWS5S
o Due next week on Oct 30th at 11:59PM on Gradescope

Greatest Common Divisor

Some Definitions

e Greatest Common Divisor (GCD):
o The Greatest Common Divisor of a and b (gcd(a, b)) is the
largest integer ¢ such that c|a and c|b

e Multiplicative Inverse:

o The multiplicative inverse of a (mod n) is an integer b such that
ab =1 (modn)

Problem 1 - Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)
a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

Try this problem with the people around you, and then we’ll go over it together!

Problem 1 - Warm-Up
a) Calculate gcd(100, 50).

a) Calculate gcd(17, 31)
a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 - Warm-Up
a) Calculate gcd(100, 50).

50
a) Calculate gcd(17, 31)

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 - Warm-Up

a) Calculate gcd(100, 50).
50

a) Calculate gcd(17, 31)
1

a) Find the multiplicative inverse of 6 (mod 7).

a) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 - Warm-Up

a) Calculate gcd(100, 50).
50
a) Calculate gcd(17, 31)
1
a) Find the multiplicative inverse of 6 (mod 7).

6

a) Does 49 have a multiplicative inverse (mod 7)?

Problem 1 - Warm-Up

a) Calculate gcd(100, 50).
50
a) Calculate gcd(17, 31)
1
a) Find the multiplicative inverse of 6 (mod 7).

6

a) Does 49 have a multiplicative inverse (mod 7)?

It does not. Intuitively, this is because 49x for any x is going to be 0
mod 7, which means it can never be 1.

Extended Euclidean Algorithm

Finding GCD

GCD Facts:
If a and b are positive
integers, then:

gcd(a, b) = ged(b, a%b)

gcd(a,0) = a

public int GCD(int m, 1int
if(m<n) {
int temp = m;
m=n;
n=temp;
ks
while(n != 0) {
int rem = m % n;

m=n;
n=temp;
return m;

gcd(a, b) = ged(b, a%b)
Euclid’s Algorithm

gcd(660,126)

gcd(a, b) = ged(b, a%b)
Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)

gcd(a, b) = ged(b, a%b)
Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)

gcd(a, b) = ged(b, a%b)
Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) gcd(126, 30)
= gcd(30, 126 % 30) gcd(30, 6)
= gcd(6, 30 % 6) cd(6, 0)

gcd(a, b) = ged(b, a%b)

Euclid’s Algorithm
gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)

=gcd(6, 30 % 6) = gcd(6, 0)
=6

gcd(a, b) = ged(b, a%b)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 % 126) = gcd(126, 30)
= gcd(30, 126 % 30) = gcd(30, 6)
= gcd(6, 30 % 6) = gcd(6, 0)
=6

Tableau form

660 = 5 - 126 + 30
126 = 4 - 30 + 6
30 =5 -6 + 0

Bézout's Theorem

e Bézout’s Theorem:
o If a and b are positive integers, then there exist integers s and t
such that
gcd(a,b) = sa +tb

e We’re not going to prove this theorem in section though,
because it’s hard and ugly

Extended Euclidean Algorithm

Bézout’s Theorem tells us that gcd(a, b) = sa + tb.
To find the s, t we can use the Extended Euclidean Algorithm.
e Step 1: compute gcd(a, b); keep tableau information

e Step 2: solve all equations for the remainder
e Step 3: substitute backward

e Compute gcd(a,b); keep
Extended Euclidean Algorithm tableau information
e Solve all equations for the

remainder
ng(35’27) e Substitute backward

e Compute gcd(a,b); keep
Extended Euclidean Algorithm tableau information
e Solve all equations for the
remainder

gcd(35,27) = gcd(27, 35%27) =gcd(27,8) e Substitute backward

e Compute gcd(a,b); keep
Extended Euclidean Algorithm tableau information
e Solve all equations for the
remainder

gcd(35,27) = gcd(27, 35%27) =gcd(27,8) e Substitute backward
= gcd(8, 27%8) = gcd(8, 3)

e Compute gcd(a,b); keep
EXtended Euclidean Algorlthm . tableau information

Solve all equations for the
remainder

gcd(35,27) = gcd(27, 35%27) = gcd(27,8) e Substitute backward
= gcd(8, 27%8) = gcd(8, 3)
= gcd(3, 8%3) = gcd(3, 2)

e Compute gcd(a,b); keep

Extended Euclidean Algorithm tableau information
e Solve all equations for the
remainder
gcd(35,27) =gcd(27, 35%27) = gcd(27,8) e Substitute backward
= gcd(8, 27%8) = gcd(8, 3)
= gcd(3, 8%3) = gcd(3, 2)

= gcd(2, 3%2) = gcd(2,1)

e Compute gcd(a,b); keep

Extended Euclidean Algorithm tableau information
e Solve all equations for the
remainder
gcd(35,27) =gcd(27, 35%27) = gcd(27,8) e Substitute backward
= gcd(8, 27%8) = gcd(8, 3)
= gcd(3, 8%3) = gcd(3, 2)
= gcd(2, 3%2) = gcd(2,1)

= gcd(1, 2%1) = gcd(1,0)

e Compute gcd(a,b); keep

Extended Euclidean Algorithm tableau information
e Solve all equations for the
remainder
gcd(35,27) =gcd(27, 35%27) = gcd(27,8) e Substitute backward
= gcd(8, 27%8) = gcd(8, 3)
= gcd(3, 8%3) = gcd(3, 2)
= gcd(2, 3%2) = gcd(2,1)
= gcd(1, 2%1) =gcd(1,0) | 35> = 1:27 + 8
27 = 3-8 + 3
8 =23 + 2
3 =12 + 1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 =127 + 8
27 = 3-8 + 3
8 =23 + 2
3 =12 + 1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 = 1:27 + 8 8 = 35 - 1-27
27 = 3-8 + 3
8 =123 + 2
3 =12 +1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 = 1-27 + 8 8 = 35 - 1-27
57 = 3-8 + 3 3 =27 - 3-8
8 =23 + 2
3 =12 +1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 = 1:27 + 8 8 = 35 - 1:27
27 = 3.8 + 3 3 =27 - 3-8
8 =23 + 2 2 =8 - 23
3 =12 + 1

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

Extended Euclidean Algorithm

35 = 127 + 8 8 = 35 - 1-27
27 = 3-8 + 3 3 =27 - 3-8
8 = 2.3 + 2 2 =8 - 2-3
3 =12 + 1 1 =3 -1-2

e Compute gcd(a,b); keep
tableau information
e Solve all equations for the

Extended Euclidean Algorithm

- remainder

8 = 35 - 1-27 e Substitute backward
3 =27 - 3°8

2 =8 - 23

1 =3 -1-2

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 =35 - 1-27 e Substitute backward
3 =27 - 38

2 =8 - 2-3 1=3-1-2

1 =3 -1-2

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 = 35 - 1-27 e Substitute backward
3 =27 - 38

2 =8 - 23 1 =3 -1-2

1=3 - 12 =3 -1-(8 - 2:3)

Extended Euclidean Algorithm

R N W

35
27
8
3

H N W R
N W

N

-

3 - 1-2
3 - 1-(8 -
-1-8 + 3-3

Compute gcd(a, b); keep
tableau information

e Solve all equations for the

remainder
Substitute backward

2-3)

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 = 35 - 1-27 e Substitute backward
3 =27 - 3°8
2 =8 - 23 1=3-1-2
1=3 - 12 =3 -1-(8 - 2:3)
= -1-8 + 3-3

= -1-8 + 3(27 - 3-8)

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

Extended Euclidean Algorithm

8 = 35 - 1-27 e Substitute backward
3 =27 - 3°8
2 =8 - 23 1=3-1-2
1=3 - 12 =3 -1-(8 - 2:3)
= -1-8 + 3-3

= -1-8 + 3(27 - 3-8)
= 3-27 - 10-8

Extended Euclidean Algorithm

R N W

35
27
8
3

H N W R
N W

N

-

e Compute gcd(a,b); keep
tableau information

e Solve all equations for the
remainder

e Substitute backward

3 -1-2

3 -1-(8 - 2:3)
~1-8 + 3-3

~1-8 + 3(27 - 3-8)
3:27 - 10-8

3:27 - 10(35 - 1-:27)

e Compute gcd(a,b); keep

Extended Euclidean Algorithm tableau information
e Solve all equations for the
- remainder
8 = 35 - 1-27 e Substitute backward
3 =27 - 3°8
2 =8 - 2-3 1=3-1-2
1 =3 -1:2 =3 -1-(8 - 2-3)
= -1-8 + 3-3
= -1-8 + 3(27 - 3:8)
= 327 - 10-8

= 3-27 - 10(35 - 1-27)
= 13-27 - 10-35

e Compute gcd(a,b); keep

Extended Euclidean Algorithm tableau information
e Solve all equations for the
- remainder
8 =35 - 1-27 e Substitute backward
3 =27 - 3°8
2 =8 - 23 1 =3 -1-2
1 =3 - 12 =3 -1-(8 - 2-3)
= -1-8 + 33
When substituting back, you = -1-8 + 3(27 - 3-8)
keep the larger of m, n and the _ . B .
number you just substituted. = 321 10-8
= 327 - 16(35 - 1-27)
Don’t simplify further! (or = 1327 - 1035

you’ll lose the form you need)

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that
7y = 1 (mod 33). You should use the extended Euclidean Algorithm. Your
answer should be in therange 0 <y <33.

b) Now, solve 7z = 2 (mod 33) for all of its integer solutions z.

Try this problem with the people around you, and then we’ll go over it together!

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd:

gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5
= gcd(5,2) 7 =1 ¢ 5 + 2
= gcd(2,1) 5 =2 2 +1
= gcd(1,0) 2 =2 ¢1+0

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd:

gcd(33,7) =

gecd(7,5)
gcd(5,2)
gcd(2,1)
gcd(1,0)

N O N W

NN =D

BN 01~

+ + + +
@ K N U

Next, we re-arrange the
equations by solving for the
remainder:

1 =5-2 2

2 =7 -1 e 5

5 =33-4 7

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd: Next, we re-arrange the
gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5 equations by solving for the
= gcd(5,2) 7 =1 ¢ 5 + 2 remainder:
= gcd(2,1) 5 =2 2 +1 1 =5-2 92
= gcd(1,0) 2 =2 ¢1+0 2 =7 -1 e 5

5 =33 -4 47

Now, we backward substitute into the boxed numbers
using the equations:

1 =5-2+2
5= 2 ¢ (7-1-5)
3e5-2¢7
3°(33-4+7)-2-7
3¢33+-14+7

Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd: Next, we re-arrange the
gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5 equations by solving for the
= gcd(5,2) 7 =1 ¢ 5 + 2 remainder:
= gcd(2,1) 5 =2 2 +1 1 =5-2 62
= gcd(1,0) 2 =2 ¢1+0 2 =7 -1 e 5

5=233-4e7
Now, we backward substitute into the boxed numbers
using the equations:

1 =5-2¢2 S0,1=333+7-
= 5= 2+« (7-1¢5) —-14. Thus, 33 - 14 =
= 3¢5-247 19 is the multiplicative
= 3¢(33-4+7)-2+7 inverse of 7 mod 33

333+-14+7

Problem 2 - Extended Euclidean Algorithm

b) Now,solve7z = 2 (mod 33) for all of its integer solutions z.

Problem 2 - Extended Euclidean Algorithm

b) Now,solve7z = 2 (mod 33) for all of its integer solutions z.

If 7y = 1(mod 33), then 2 - 7y = 2(mod 33).

Problem 2 - Extended Euclidean Algorithm

b) Now,solve7z = 2 (mod 33) for all of its integer solutions z.

If 7y = 1(mod 33), then 2 - 7y = 2(mod 33).

S0,z =2 - 19(mod 33) = 5(mod 33). This means that the set
of solutions is {5 + 33k | k € Z}

Proof by Contradiction

S5b: argue code is valid using contradiction

Problem 5b - Proof by Contradiction

public boolean i1sPrime (int n) {
int potentialDiv = 2;
while (potentialDiv < n) {
if (n % potentialDiv == 0)
return false;
potentialDiv++;
}

return true;

}

Returns true if and only if n is prime (assume n > 0).

(Given)

Problem 5b - Proof by Contradiction

public boolean i1sPrime (int n) {
int potentialDiv = 2;
while (potentialDiv <= Math.sqgrt(n)) {

o

1if (n % potentialDiv == 0)
(Modified)

return false;

potentialDiv++;
}

return true;

}

(Maybe) Returns true if and only if n is prime (assume n > 0).

Problem 5b - Proof by Contradiction

“nontrivial divisor”: a factor that isn’t 1 or the number itself. Formally, a positive
integer k being a “nontrivial divisor” of n means that k|n, k # 1 and k # n.

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

Prove this with contradiction!

Problem 5b - Proof by Contradiction

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(proof by contradiction): Suppose, for the sake of contradiction, that there is an n such that n has a
non-trivial divisor and all its nontrivial divisors are greater than /n.

Problem 5b - Proof by Contradiction

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(proof by contradiction): Suppose, for the sake of contradiction, that there is an n such that n has a
non-trivial divisor and all its nontrivial divisors are greater than /n.

Let k be a nontrivial divisor of n. Since k is a divisor, n = kc for some integer ¢. Observe that ¢ is also
nontrivial, since if ¢ were 1 or n then k£ would have to be n or 1.

Problem 5b - Proof by Contradiction

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(proof by contradiction): Suppose, for the sake of contradiction, that there is an n such that n has a
non-trivial divisor and all its nontrivial divisors are greater than /n.

Let k be a nontrivial divisor of n. Since k is a divisor, n = kc for some integer ¢. Observe that ¢ is also
nontrivial, since if ¢ were 1 or n then k£ would have to be n or 1.

Since both k and n are non-trivial divisors, we have that k > /n and ¢ > /n. Then k¢ > /n\/n = n. But
by assumption we have ke = n, so this is a contradiction. Thus we conclude our original claim—that if a
positive integer n has a nontrivial divisor, then it has a nontrivial divisor at most y/n—is true.

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(alternative proof): Let k be a nontrivial divisor of n. Since k is a divisor, n = kc¢ for some integer c.
Observe that ¢ is also nontrivial, since if ¢ were 1 or n then k£ would have to be n or 1.

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(alternative proof): Let k be a nontrivial divisor of n. Since k is a divisor, n = kc¢ for some integer c.
Observe that ¢ is also nontrivial, since if ¢ were 1 or n then k£ would have to be n or 1.

We now have two cases:

Case 1: k < \/n

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(alternative proof): Let k be a nontrivial divisor of n. Since k is a divisor, n = kc¢ for some integer c.
Observe that ¢ is also nontrivial, since if ¢ were 1 or n then k£ would have to be n or 1.

We now have two cases:

Case 1: k < \/n
If £ < y/n, then we’re done because k is the desired nontrivial divisor.

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(alternative proof): Let k be a nontrivial divisor of n. Since k is a divisor, n = kc¢ for some integer c.
Observe that ¢ is also nontrivial, since if ¢ were 1 or n then k£ would have to be n or 1.

We now have two cases:

Case 1: k < \/n
If £ < y/n, then we’re done because k is the desired nontrivial divisor.

Case 2: k > \/n

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(alternative proof): Let k be a nontrivial divisor of n. Since k is a divisor, n = kc¢ for some integer c.
Observe that ¢ is also nontrivial, since if ¢ were 1 or n then k£ would have to be n or 1.

We now have two cases:

Case 1: k < \/n
If £ < y/n, then we’re done because k is the desired nontrivial divisor.

Case 2: k > \/n
If k > /n, then multiplying both sides by ¢ we get ck > ¢y/n. But ck = n so n > ¢/n. Finally, dividing
both sides by /n gives v/n > ¢, so ¢ is the desired nontrivial factor.

Problem 5b - Proof by Contradiction, v2

Claim: For every positive integer n, if n has a nontrivial divisor, then it has a
nontrivial divisor at most Vn

(alternative proof): Let k be a nontrivial divisor of n. Since k is a divisor, n = kc¢ for some integer c.
Observe that ¢ is also nontrivial, since if ¢ were 1 or n then k£ would have to be n or 1.

We now have two cases:

Case 1: k < \/n
If £ < y/n, then we’re done because k is the desired nontrivial divisor.

Case 2: k > \/n
If k > /n, then multiplying both sides by ¢ we get ck > ¢y/n. But ck = n so n > ¢/n. Finally, dividing
both sides by /n gives v/n > ¢, so ¢ is the desired nontrivial factor.

In both cases we find a nontrivial divisor at most y/n, as required.

Number Theory

Bonus! :D

Some Definitions

e Divides:
o Fora,b€Z:a|biff A(k €Z)b = ka
o Forintegers a and b, we say a divides b if and only if there exists
an integer k such thatb = ka

e Congruence Modulo:
o Fora,b€ZmeZ " a=b (modm)iffm| (b—a)
o Forintegers a and b and positive integer m, we say a is
congruent to b modulom if and only if m divides b — a

Problem 4 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Lets walk through part (a) together.

Problem 4 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | band b | a, where a, b are integers. Start with your
proof
skeleton!

Therefore, it followsthata = —b ora = b.

Problem 4 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | band b | a, wherea, b are integers.

By the definition of divides, we havea # 0,b # 0 and b = ka, a = jb for some integers
k,j.

Therefore, it followsthata = —b ora = b.

Problem 4 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers.
By the definition of divides, we havea # 0, b # 0 and b = ka, a = jb for some integers

k,j.
Combiningthese equations,we see thata = j(ka).

Therefore, it followsthata = —b ora = b.

Problem 4 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | band b | a, where a, b are integers.

By the definition of divides, we havea # 0,b # 0 and b = ka, a = jb for some integers
k,j.

Combiningthese equations,we see thata = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,% = k.

Therefore, it followsthata = —b ora = b.

Problem 4 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | band b | a, where a, b are integers.

By the definition of divides, we havea # 0,b # 0 and b = ka, a = jb for some integers
k,j.

Combiningthese equations,we see thata = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,% = k.

Notethatj and k are integers, which is only possibleif j, k € {1,—1}.

Therefore, it followsthata = —b ora = b.

Problem 4 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Now try part (b) with the people around you, and then we’ll go over it together!

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,thena = b (mod n).

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

Therefore,we havea = b (mod n).

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

...wehaven | (b —a).

Therefore, by definition of congruence,we havea = b (mod n).

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

NOTE: we don’t know what C will look like

yet, just that there is SOME integer here!
...wehaveb —a = ncC.

Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m areintegers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).
By definition of divides, we havem = kn forsome k € Z.

...wehaveb —a = nC.
Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).
By definition of divides, we havem = kn forsome k € Z.
By definition of congruence,we havem | a — b, which means thata — b = mj forsome

jEL

...wehaveb —a = nC.
Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m areintegers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

By definition of divides, we havem = kn forsome k € Z.

By definition of congruence,we havem | a — b, which means thata — b = mj forsome
j €.

Combiningthe two equations,we seethata — b = (knj) = n(kj).

...wehaveb —a = nC.

Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m areintegers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

By definition of divides, we havem = kn forsome k € Z.

By definition of congruence,we havem | a — b, which means thata — b = mj forsome
j €.

Combiningthe two equations,we seethata — b = (knj) = n(kj).

Equivalently,we have b — a = n(—kj).

Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).

Problem 4 - Modular Arithmetic

b) Provethatifn | m, wheren and m areintegers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

By definition of divides, we havem = kn forsome k € Z.

By definition of congruence,we havem | a — b, which means thata — b = mj forsome
j €.

Combiningthe two equations,we seethata — b = (knj) = n(kj).

Equivalently,we have b — a = n(—kj).

Because —kj is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).

That's All, Folks!

Thanks for coming to section this week!
Any questions?

