CSE 311 Section 4

English Proofs, Divisibility/Modulo, and
Inference Proofs




Administrivia




Announcements & Reminders

o HW?2
o If you think something was graded incorrectly, submit a regrade request!

e HW3 due yesterday 10/16 @ 11:59PM on Gradescope
o Use late days if you need them!

e HW4
o Due Wednesday 10/23 @ 11:59pm



References

Helpful reference sheets can be found on the course website!
o https://courses.cs.washington.edu/courses/cse311/24au/resources/

How to LaTeX (found on Assignments page of website):
o https://courses.cs.washington.edu/courses/cse311/24au/assignments/HowToLaTeX.pdf

Set Reference Sheet
o https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-sets.pdf

Number Theory Reference Sheet

o https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-number-theory.p
df

Plus more!



https://courses.cs.washington.edu/courses/cse311/24au/resources/
https://courses.cs.washington.edu/courses/cse311/24au/assignments/HowToLaTeX.pdf
https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-sets.pdf
https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-number-theory.pdf
https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-number-theory.pdf

English Proofs




Writing a Proof (symbolically or in English)

Don't just jump right in!

Look at the claim, and make sure you know:
o What every word in the claim means
o What the claim as a whole means

e Translate the claim in predicate logic.

e Next, write down the Proof Skeleton:
o Where to start
o What your target is

e Then once you know what claim you are proving and your starting point and
ending point, you can finally write the proof!



Helpful Tips for English Proofs

e Start by introducingyourassumptions

e Introduce variables with “let”
® “Let x be anarbitrary prime number...”

e Introduce assumptions with “suppose”
® “Supposethaty€e ANy &B...”

e Whenyou supplya valuefor an existence proof, use “Consider”
e “Considerx =2..”

e ALWAYSstate whattype yourvariableis (integer, set, etc.)
e Universal Quantifier meansvariable must be arbitrary

e Existential Quantifier meansvariable can be specific



Problem 2 - Just the Setup

Foreach of these statements,
* Translate the sentenceinto predicate logic.
* Write thefirst few sentences and last few sentences of the English proof.

a
b
c)
d)

) The productof an evenintegerand an odd integeris even.
) Thereisanintegerx suchthatx? > 10 and 3x is even.
Forevery integern, thereis a prime number p greaterthann.

IfACS BandB < C,thenA € C foranysets A, B, C.

Work on parts (b) and (c) with the people around you, and then we’ll go over it
together!



Problem 2 - Just the Setup

b) Thereisanintegerx suchthatx? > 10 and 3x is even.



Problem 2 - Just the Setup

b) Thereisanintegerx suchthatx? > 10 and 3x is even.

Jdx[GreaterThan10(x?) A Even(3x)]



Problem 2 - Just the Setup

b) Thereisanintegerx suchthatx? > 10 and 3x is even.

Jdx[GreaterThan10(x?) A Even(3x)]

Considerx = 6.



Problem 2 - Just the Setup

b) Thereis anintegerx suchthatx? > 10 and 3x is even.

Jdx[GreaterThan10(x?) A Even(3x)]

Considerx = 6.

Then there existssome integer k suchthat3 - 6 = 2k.



Problem 2 - Just the Setup

b) Thereis anintegerx suchthatx? > 10 and 3x is even.

Jx[GreaterThan10(x?) A Even(3x)]

Considerx = 6.

Then there exists someinteger k suchthat3 - 6 = 2k.
So 62> 10and3 - 6iseven.
Hence, 6 is the desired x.



Problem 2 - Just the Setup

c) Foreveryintegern,thereis a prime numberp greater thann.



Problem 2 - Just the Setup

c) Foreveryintegern,thereis a prime numberp greater thann.

Vx3y[Prime(y) A GreaterThan(y, x)]



Problem 2 - Just the Setup

c) Foreveryintegern,thereis a prime numberp greater thann.

Vx3y[Prime(y) A GreaterThan(y, x)]

Let x be an arbitrary integer.



Problem 2 - Just the Setup

c) Foreveryintegern,thereis a prime numberp greater thann.

Vx3y[Prime(y) A GreaterThan(y, x)]

Let x be an arbitrary integer.
Considery = p (thisp is a specific prime)



Problem 2 - Just the Setup

c) Foreveryintegern,thereis a prime numberp greater thann.

Vx3y[Prime(y) A GreaterThan(y, x)]

Let x be an arbitrary integer.
Considery = p (thisp is a specific prime)

Sopisprimeandp > x.
Since x was arbitrary, we have that every integer has a prime number that is greater
thanit.



Divisibility & Modulus




Some Definitions

e Divides:
o Fora,b€Z:a|biff A(k € Z) b = ka
o Forintegers a and b, we say a divides b if and only if there exists
an integer k such thatb = ka

e Congruence Modulo:
o Fora,b€Zm€eZ a=b (modm)iffm| (b—a)
o Forintegers a and b and positive integer m, we say a is
congruent to b modulom if and only if m divides b — a



Problem 1 - Divisibility

(a) Circle the statements below that are true. Recall that for a, b € Z: a|b if and
only if 3k € Z such that b = ka.

(i) 113

(i) 3|1

(i) 212018

(iv) -2 |12

(v) 1-2-3-4[1-2-3-4-5



Problem 1 - Divisibility

(a) Circle the statements below that are true. Recall that for a, b € Z: a|b if and
only if 3k € Z such that b = ka.

(i) 113 True
(i) 3|1 False
(iii) 212018 True
(iv) -2]12 True

(v) 1-2-3-4|1-2-3-4-5 True



Problem 1 - Divisibility

(b) Circle the statements below that are true. Recall that for a, b, m € Z and
m > 0:a = b (modm) ifand only if m | (a — b).

(i) —3 =3 (mod3)

(i) 0=9000 (mod9)
(iii) 44 =13 (mod 7)
(iv) —58 =707 (mod 5)
(v) 58 =707 (mod)5)



Problem 1 - Divisibility

(b) Circle the statements below that are true. Recall that for a, b, m € Z and
m > 0:a = b (modm) ifand only if m | (a — b).

(i) —3 =3 (mod3) True
(i) 0=9000 (mod9) True
(iii) 44 =13 (mod 7) False
(iv) —58 =707 (mod 5) True

(v) 58 =707 (mod)5) False



Inference Proofs




Inference Proofs

e New way of doing proofs:
o  Write down all the facts we know (givens)
o Combine the things we know to derive new facts
o Continue until what we want to show is a fact

e Modus Ponens

o [->pApl=q=T
o Ifyouhaveanimplication and its hypothesis as facts, you can get the conclusion

e Direct Proof Rule
o Assume x and then eventually get y, you can conclude thatx — y



Problem 10 - Formal Spoofs

#or each of the following proofs, determine why the proof is incorrect. Then,
consider whether the conclusion of the proof is true or not. If it is true, state how
the proof could be fixed. If it is false, give a counterexample.

(a) Show that 3z Vx P(x, z) follows from Vx 3y P(x,y)
(b) Show that 3z(P(z) A Q(z)) follows from Vx P(x) and 3y Q(y)

Let's do part a



Problem 10 - Formal Spoofs
(a) Show that 3z Vx P(x, z) follows from Vx 3y P(x, y)
1. Vx3y P(x,y) [Given]

2. VxP(x,c) [3 Elim: 1, ¢ special]
3. 3zVx P(x,z) [3 Intro: 2]



Problem 10 - Formal Spoofs

(a) Show that 3z Vx P(x, z) follows from Vx 3y P(x, y)

1.
2.
3.

Vx3y P(x,y)
Vx P(x,c)
AzVx P(x, z)

[Given]
[3 Elim: 1, c special]
[3 Intro: 2]

Mistake on line 2, an inference rule is
used on a subexpression. When we
apply something like the 3 Elim rule,
the 3 must be at the start of the
expression and outside all other parts
of the statement



Problem 10 - Formal Spoofs

(a) Show that 3z Vx P(x, z) follows from Vx 3y P(x, y)

_ Mistake on line 2, an inference rule is
1. Vx3y P(x,y) [Given] used on a subexpression. When we

- : apply something like the 3 Elim rule,
2. Vx P(x, C) [3 Elim: 1, speC|aI] thpepéll must be gt the start of the

3. 3AzVx P(x,z) [3 Intro: 2] expression and outside all other parts
of the statement

The conclusion is false, it's basically saying we can interchange the order of ¥ and 3
quantifiers. Let the domain of discourse be integers and define P(x,y) to be x < y. Then
the hypothesis is true: for every integer, there is a larger integer. However, the conclusion
is false: there is no integer that is larger than every other integer. Hence, there can be no
correct proof that the conclusion follows from the hypothesis.



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) vV Q(x)) and Vy (=Q(y) VR(y))



Problem 12 - A Formal Proof in Predicate Logic
Prove 3x (P(x) V R(x)) from Vx (P(x) v Q(x)) and Vy (=Q(y) VR(¥y))

1. vx(P(x)vQ(x)) [Given]
2. Vy(=Q(y)VR(Y)) [Given]

?. dx (P(x) VR(x)) ??7?



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

1. vx(P(x)vQ(x)) [Given]
2. Vy(=Q(y)VR(Y)) [Given]
3. P(a)vQ(a) [Elim V: 1]

?. dx (P(x) VR(x)) ??7?



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

1. Vx(P(x)VQ(x)) [Given]
2. YVy(=Q(y)VR®Y)) [Given]
3. P(a)vQ(a) [Elim V:1]
4. =Q(a)VR(a) [Elim V: 2]

?. dx (P(x) VR(x)) ?7?7?



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

1. Vx(P(x)VQ(x)) [Given]

2. Vy(=Q(y)VR(Y)) [Given]

3. P(a)vQ(a) [Elim V:1]

4. —Q(a)VR(a) [Elim V: 2]

5. Q(a) = R(a) [Law of implication: 4]

?. dx (P(x) VR(x)) ??7?



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

O ahkowh =~

Vx (P(x) vV Q(x))
vy (2Q(y) VR())
P(a) v Q(a)
-Q(a) VR(a)
Q(a) - R(a)
ﬂﬂP(a) \" Q(a)

dx (P(x) VR(x))

[Given]

[Given]

[Elim v: 1]

[Elim V: 2]

[Law of implication: 4]
[Double Negation: 3]

?27?



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

NOoO GakON =~

Vx (P(x) v Q(x))
vy (=Q(») VR())
P(a) v Q(a)
-Q(a) VR(a)
Q(a) - R(a)
ﬂﬂP(a) \" Q(a)
=P(a) - Q(a)

dx (P(x) VR(x))

[Given]

[Given]

[Elim V: 1]

[Elim V: 2]

[Law of implication: 4]
[Double Negation: 3]
[Law of implication: 5]

?27?



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

NOoO GakON =~

Vx (P(x)VvQ
Vy (=Q(y)V
P(a) Vv Q(a)

()
R(»))

-Q(a) VR(a)

Q(a) - R(a)

—=P(a)V Q(a)
—P(a) - Q(a)

8.1.

—-P (a)

[Assumption]

[Given]

[Given]

[Elim V: 1]

[Elim V: 2]

[Law of implication: 4]
[Double Negation: 3]
[Law of implication: 5]



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

1. vVx(P(x)VvQ@(x)) [Given]

2. Vy(=Q)VR(®»)) [Given]

3. P(a)vQ(a) [Elim V:1]

4. -Q(a)VR(a) [Elim V: 2]

5. Q(a) = R(a) [Law of implication: 4]
6. ——-P(a)VvQ(a) [Double Negation: 3]
7. =P(a) - Q(a) [Law of implication: 5]

8.1. -—P(a) [Assumption]
8.2. Q(a) [Modus Ponens: 8.1, 7]



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

1. vVx(P(x)VvQ@(x)) [Given]

2. Vy(=Q)VR(®»)) [Given]

3. P(a)vQ(a) [Elim V:1]

4. -Q(a)VR(a) [Elim V: 2]

5. Q(a) = R(a) [Law of implication: 4]
6. ——-P(a)VvQ(a) [Double Negation: 3]
7. =P(a) - Q(a) [Law of implication: 5]

8.1. —=P(a) [Assumption]
8.2. Q(a) [Modus Ponens: 8.1, 7]
8.3. R(a) [Modus Ponens: 8.2, 5]



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

NOoO GakON =~

Vx (P(x) VQ(x)) [Given]

vy (5Q(») VR()) [Given]

P(a) v Q(a) [Elim v: 1]

-Q(a) VR(a) [Elim V: 2]

Q(a) = R(a) [Law of implication: 4]
——=P(a) vV Q(a) [Double Negation: 3]
—P(a) = Q(a) [Law of implication: 5]

8.1. -—P(a) [Assumption]
8.2. Q(a) [Modus Ponens: 8.1, 7]
8.3. R(a) [Modus Ponens: 8.2, 5]
-P(a) - R(a) [Direct Proof]



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

:\J

©oN>ORARODN =

Vx (P(x) v Q(x))
vy (=Q(») VR())
P(a) v Q(a)
-Q(a) VR(a)
Q(a) - R(a)
ﬂﬂP(a) V Q(a)
=P(a) - Q(a)
—P(a) = R(a)
—=P(a) VR(a)

dx (P(x) VR(x))

[Given]

[Given]

[Elim v: 1]

[Elim V: 2]

[Law of implication: 4]
[Double Negation: 3]
[Law of implication: 5]
[Direct Proof: 4]

[Law of implication: 8]

?2?7?



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

N =20 0N OkON =

Vx (P(x) v Q(x))
vy (=Q(») VR())
P(a) v Q(a)
-Q(a) VR(a)
Q(a) - R(a)
——=P(a) vV Q(a)
=P(a) - Q(a)
—P(a) = R(a)
—=P(a) VR(a)

. P(a) VR(a)

dx (P(x) VR(x))

[Given]

[Given]

[Elim V: 1]

[Elim V: 2]

[Law of implication: 4]
[Double Negation: 3]
[Law of implication: 5]
[Direct Proof: 4]
[Law of implication: 8]
[Double Negation: 9]
??7?



Problem 12 - A Formal Proof in Predicate Logic

Prove 3x (P(x) VR(x)) from Vx (P(x) V Q(x)) and Vy (=Q(y) VR(Y))

1. vVx(P(x)VvQ@(x)) [Given]

2. Vy(=Q(¥)VR®»)) [Given]

3. P(a)vQ(a) [Elim V:1]

4. -=Q(a)VR(a) [Elim V: 2]

5. Q(a) » R(a) [Law of implication: 4]
6. ——-P(a)VvQ(a) [Double Negation: 3]
7. =P(a) - Q(a) [Law of implication: 5]
8. -=P(a) - R(a) [Direct Proof: 4]

9. =-P(a)VR(a) [Law of implication: 8]
10. P(a) VR(a) [Double Negation: 9]
11. 3x (P(x) V R(x)) [Intro 3: 10]



Bonus: Modular Arithmetic




Problem 3 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Lets walk through part (a) together.



Problem 3 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | band b | a, where a, b are integers. Start with your
proof
skeleton!

Therefore, it followsthata = —b ora = b.



Problem 3 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | band b | a, wherea, b are integers.

By the definition of divides, we havea # 0, b # 0 and b = ka, a = jb for some integers
k,j.

Therefore, it followsthata = —b ora = b.



Problem 3 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers.
By the definition of divides, we havea # 0, b # 0 and b = ka, a = jb for some integers

k,j.
Combiningthese equations,we see thata = j(ka).

Therefore, it followsthata = —b ora = b.



Problem 3 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers.

By the definition of divides, we havea # 0,b # 0 and b = ka, a = jb for some integers
k,j.

Combiningthese equations,we see thata = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,% = k.

Therefore, it followsthata = —b ora = b.



Problem 3 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

Supposethata | b and b | a, where a, b are integers.

By the definition of divides, we havea # 0,b # 0 and b = ka, a = jb for some integers
k,j.

Combiningthese equations,we see thata = j(ka).

Then, dividing both sides by a, we get 1 = jk. So,% = k.

Notethatj and k are integers, which is only possibleif j, k € {1,—1}.

Therefore, it followsthata = —b ora = b.



Problem 3 - Modular Arithmetic

a) Provethatifa | bandb | a, wherea and b are integers,thena = b or
a = —b.

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Now try part (b) with the people around you, and then we’ll go over it together!



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m areintegers greater than 1, and if
a = b (mod m), wherea and b are integers,thena = b (mod n).



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m areintegers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

Therefore,we havea = b (mod n).



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

...wehaven | (b —a).

Therefore, by definition of congruence,we havea = b (mod n).



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

NOTE: we don’t know what C will look like

yet, just that there is SOME integer here!
...wehaveb —a = ncC.

Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).
By definition of divides, we havem = kn forsome k € Z.

...wehaveb —a = nC.
Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).
By definition of divides, we havem = kn forsome k € Z.
By definition of congruence,we havem | a — b, which means thata — b = mj forsome

jEL

...wehaveb —a = nC.
Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

By definition of divides, we havem = kn for some k € Z.

By definition of congruence,we havem | a — b, which means thata — b = mj forsome
j €.

Combiningthe two equations,we seethata — b = (knj) = n(kj).

...wehaveb —a = nC.

Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

By definition of divides, we havem = kn forsome k € Z.

By definition of congruence,we havem | a — b, which means thata — b = mj forsome
j €.

Combiningthe two equations,we seethata — b = (knj) = n(kj).

Equivalently,we have b — a = n(—kj).

Because C is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).



Problem 3 - Modular Arithmetic

b) Provethatifn | m, wheren and m are integers greater than 1, and if
a = b (mod m), wherea and b are integers,then a = b (mod n).

Letn,m, a, b beintegers. Supposen | mwithn,m > 1,anda = b (mod m).

By definition of divides, we havem = kn forsome k € Z.

By definition of congruence,we havem | a — b, which means thata — b = mj forsome
j €.

Combiningthe two equations,we seethata — b = (knj) = n(kj).

Equivalently,we have b — a = n(—kj).

Because —kj is an integer, by definition of divides, we haven | (b — a).

Therefore, by definition of congruence,we havea = b (mod n).



Inference Proof Example

Given ((p = q) A(q — 1)), show that (p = 1)

1. (p= A (@—>T1)) Given

2. p—ogq Eliminate A: 1

3. g-r Eliminate A: 1
41 p Assumption
42 q Modus Ponens: 4.1, 2
43 r Modus Ponens: 4.2, 3

5. por Direct Proof Rule



That's All, Folks!

Thanks for coming to section this week!
Any questions?




