CSE 311 Section 3

Quantifiers and Proofs




Administrivia & Introductions




Announcements & Reminders

e HW1
o If you think something was graded incorrectly, submit a regrade request!

e HW2 due YESTERDAY on Gradescope
o Use late days if you need them!
o Submit hw feedback!

e HWS3
o Due Wednesday 10/16 @ 11:59pm



References

Helpful reference sheets can be found on the course website!

® htips://courses.cs.washington.edu/courses/cse311/24au/resources/
How to LaTeX (found on Assignments page of website):

® htips://courses.cs.washington.edu/courses/cse311/24au/assignments/HowTolLaTeX.pdf
Equivalence Reference Sheet

® https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-logical equiv.pdf

® https://courses.cs.washington.edu/courses/cse311/24au/resources/logicalConnectPoster.pdf
Boolean Algebra Reference Sheet
® https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-boolean-al

q.pdf
Plus more!



https://courses.cs.washington.edu/courses/cse311/24au/resources/
https://courses.cs.washington.edu/courses/cse311/24au/assignments/HowToLaTeX.pdf
https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-logical_equiv.pdf
https://courses.cs.washington.edu/courses/cse311/24au/resources/logicalConnectPoster.pdf
https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-boolean-alg.pdf
https://courses.cs.washington.edu/courses/cse311/24au/resources/reference-boolean-alg.pdf

Predicates & Quantifiers




Predicates & Quantifiers Review

e Predicate: a function that outputs true or false
o Cat(x):=“xisacat”
o LessThan(x,y):=“x <y”

e Domain of Discourse: the types of inputs allowed in predicates
o Numbers, mammals, cats and dogs, people in this class, etc.

e Quantifiers
o Universal Quantifier Vx: for all x, for every x
o Existential Quantifier 3x: thereis an x, there exists an x, for some x

e Domain Restriction
o Universal Quantifier ¥x: add the restriction as the hypothesis to an implication
o Existential Quantifier 3x: AND in the restriction



Problem 2 - Domain Restriction

Translate each of the following sentences into logical notation. These translations require
some of our quantifier tricks. You may use the operators + and - which take two numbers as
input and evaluate to their sum or product, respectively.

a) Domain: Positive integers; Predicates: Even, Prime, Equal
“There is only one positive integer that is prime and even.”

b) Domain: Real numbers; Predicates: Even, Prime, Equal
“There are two different prime numbers that sum to an even number.”

c) Domain: Real numbers; Predicates: Even, Prime, Equal
“The product of two distinct prime numbers is not prime.”

d) Domain: Real numbers; Predicates: Even, Prime, Equal, Positive, Greater, Integer
“For every positive integer, there is a greater even integer”

Work on parts (a) and (b) with the people around you, and then we’ll go over it
together!
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Problem 2 - Domain Restriction

a) Domain: Positive integers; Predicates: Even, Prime, Equal
“There is only one positive integer that is prime and even.”

We can start out with:

dx(Prime(x) A Even(x))



Problem 2 - Domain Restriction

a)

Domain: Positive integers; Predicates: Even, Prime, Equal
“There is only one positive integer that is prime and even.”

We can start out with:
dx(Prime(x) A Even(x))
But now we need to add in the restriction that this x is the ONLY positive integer that is

prime and even. This is a technique you’ll use whenever you need to have only one of
something:

dx(Prime(x) A Even(x) A Vy[=Equal(x,y) = —=(Even(y) A Prime(y))])

Or, we could use the contrapositive:
dx(Prime(x) A Even(x) A Vy[(Even(y) A Prime(y) = Equal(x,y)])



Problem 2 - Domain Restriction

b) Domain: Real numbers; Predicates: Even, Prime, Equal
“There are two different prime numbers that sum to an even number.”



Problem 2 - Domain Restriction

b) Domain: Real numbers; Predicates: Even, Prime, Equal
“There are two different prime numbers that sum to an even number.”

Seems like maybe we should be able to say something like:

dx3y(Prime(x) A Prime(y) A Even(x + y))



Problem 2 - Domain Restriction

b) Domain: Real numbers; Predicates: Even, Prime, Equal
“There are two different prime numbers that sum to an even number.”

Seems like maybe we should be able to say something like:
dx3y(Prime(x) A Prime(y) A Even(x + y))

But this leaves open the possibility of x and y being equal (so they won’t be two DIFFERENT
numbers). So, we need to explicitly add in that x and y are not equal:

dx3y(Prime(x) A Prime(y) A Even(x + y) A =mEqual(x,y))



Problem 1 - ctrl-z

Translate these logical expressions to English. For each of the translations, assume that
domain restriction is being used and take that into accountin your English versions.

Let your domain be all UW Students. Predicates 143Student(x) and 311Student(x)
mean the studentisin CSE 143 and 311, respectively. BioMajor(x) means x is a bio
major, DidHomeworkOne(x) means the studentdid homework 1 (of 311). Finally,
KnowsJ]ava(x) and KnowsDeMorgan(x) mean x knows Java and knows DeMorgan’s
Laws, respectively.

a) Vx(1438tudent(x) - Knows]ava(x))
b) Elx(1438tudent(x) A BioMajor(x))
c) Vx([311Student(x) A DidHomeworkOne(x)] - KnowsDeMorgan(x))

Work on parts (a) and (c) with the people around you, and then we’ll go over it
together!



Problem 1 - ctrl-z

a) Vx(143Student(x) — KnowsJava(x))



Problem 1 - ctrl-z

a) Vx(143Student(x) — KnowsJava(x))

Every 143 student knows java.

“If a UW student is a 143 student, then they know java” is a valid translation of the
original sentence, but it is not taking advantage of the domain restriction.



Problem 1 - ctrl-z

c) Vx([311Student(x) A DidHomeworkOne(x)] - KnowsDeMorgan(x))



Problem 1 - ctrl-z

c) Vx([311Student(x) A DidHomeworkOne(x)] - KnowsDeMorgan(x))

All 311 students who do Homework 1 know DeMorgan’s Laws.

“If a UW student is a 311 student and they did Homework 1, then they know
DeMorgan’s Laws” is a valid translation of the original sentence, but it is not taking
advantage of the domain restriction.



Problem 3 - There Exists An Implication

Implications are uncommon under existential quantifiers. Consider this
expression (which we’ll call “the original expression”): 3 x(P(x) — Q(x))

a) Suppose that P(x) is not always true (i.e. there is an element in the
domain for which P(x) is false). Explain why the original expression is
true in this case.

b) Suppose that P(x) is always true (i.e. ¥ x P(x)). There is a simpler
statement which conveys the meaning of the original expression (i.e. is
equivalent to it for all domains and predicates. By simpler, we mean
“‘uses fewer symbols”).

WEe’ll go over a) and b) together!
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Problem 3 - There Exists An Implication

Implications are uncommon under existential quantifiers. Consider this
expression (which we’ll call “the original expression”): 3 x(P(x) — Q(x))

a) Suppose that P(x) is not always true (i.e. there is an element in the
domain for which P(x) is false). Explain why the original expression is
true in this case.
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Problem 3 - There Exists An Implication

Implications are uncommon under existential quantifiers. Consider this
expression (which we’ll call “the original expression”): 3 x(P(x) — Q(x))

a) Suppose that P(x) is not always true (i.e. there is an element in the
domain for which P(x) is false). Explain why the original expression is
true in this case.

P(x) | Q(x) | P(x)—Q(x)

T T T
If P(x) ever false,
P(x) — Q(x) is true ! i b
F T T




Problem 3 - There Exists An Implication

Implications are uncommon under existential quantifiers. Consider this
expression (which we’ll call “the original expression”): 3 x(P(x) — Q(x))

b) Suppose that P(x) is always true (i.e. Vx P(x)). There is a simpler
statement which conveys the meaning of the original expression (i.e. is
equivalent to it for all domains and predicates. By simpler, we mean
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Problem 3 - There Exists An Implication

Implications are uncommon under existential quantifiers. Consider this
expression (which we’ll call “the original expression”): 3 x(P(x) — Q(x))

b) Suppose that P(x) is always true (i.e. ¥ x P(x)). There is a simpler
statement which conveys the meaning of the original expression (i.e. is
equivalent to it for all domains and predicates. By simpler, we mean
“‘uses fewer symbols”).

P(x) | Q(x) | P(x)—Q(x)

y

T T T
If P(x) always true,
P(x) — Q(x) is Q(X) T F F
F T T




Problem 3 - There Exists An Implication

Takeaway
You rarely want to see 3 x(P(x) — Q(x)) in your final answer!

A x(P(x) — Q(x)) is weird!



Problem 4 - Quantifier Switch

Considerthe following pairs of sentences. For each pair, determine if one implies the
other, if they are equivalent, or neither.

a) VxVyP(x,y) VyVx P(x,y)
b) Ix3y P(x,y) dy Ix P(x,y)
c) Vx3yP(x,y) Vy 3x P(x,y)
d) vVx3yP(x,y) dx Vy P(x,y)
e) Vx3yP(x,y) Jy Vx P(x,y)

Work on parts (d) and (e) with the people around you, and then we’ll go over it
together!



Problem 4 - Quantifier Switch

d) vVx3yP(x,y) 3x Vy P(x,y)



Problem 4 - Quantifier Switch

d) vVx3yP(x,y) dx Vy P(x,y)
Different!
For all x, there is a y vs there exists an x, that, for all y

“All people own a dog” “There is person that owns all dogs”
Robbie | Aruna Anna Jacob Robbie | Aruna Anna Jacob
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Problem 4 - Quantifier Switch

d) Vx3yP(x,y) Ix Vy P(x,y)

Different!
For all x, there is a y vs there exists an x, that, for all y
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Problem 4 - Quantifier Switch

e) Vx3yP(x,y) 3y Vx P(x,y)



Problem 4 - Quantifier Switch Values that work for
the first

e) Vx3yP(x,y) dy Vx P(x,y)

The second implies the first
For all x, there is ay vs there exists a y, that, for all x

The second is stronger since a specific y must work for all x whereas for the first, the y
value does not have to be the same for every x

“All people own a dog” “There is a dog owned by all people”

Robbie | Aruna Anna Jacob Robbie | Aruna Anna Jacob
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Problem 4 - Quantifier Switch

e) Vx3yP(x,y)

The second implies the first

Ay Vx P(x,y)

For all x, there is ay vs there exists a y, that, for all x

The second is stronger since a specific y must work for all x whereas for the first, the y
value does not have to be the same for every x

“All people own a dog”

Robbie | Aruna Anna

Jacob

X

VS

(—

“There is a dog owned by all people”

Values that
work for the first

Robbie | Aruna Anna Jacob
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Direct Proofs




Direct Proofs

e Verycommon form of proof, sometimes written as a symbolic proof and
sometimeswritten as an English proof

e Usedirect proofsto proveimplications

e Stepstoprovep — g
o Assumepistrue
o  Write down all the facts we know (including p)
o Combine the things we know to derive new facts
o Continue until we directly show q is true



Writing a Proof (symbolically or in English)

Don't just jump right in!

Look at the claim, and make sure you know:
o What every word in the claim means
o What the claim as a whole means

e Translate the claim in predicate logic.

e Next, write down the Proof Skeleton:
o Where to start
o What your target is

e Then once you know what claim you are proving and your starting point and
ending point, you can finally write the proof!



Helpful Tips for English Proofs

e Start by introducingyourassumptions

e Introduce variables with “let”
® “Let x be anarbitrary prime number...”

e Introduce assumptions with “suppose”
® “Supposethaty€e ANy &B...”

e Whenyou supplya valuefor an existence proof, use “Consider”
e “Considerx =2..”

e ALWAYSstate whattype yourvariableis (integer, set, etc.)
e Universal Quantifier meansvariable must be arbitrary

e Existential Quantifier meansvariable can be specific



Problem 7 - Direct Proof

a) Let the domain of discourse be integers. Define the predicates 0dd(x) := 3k(x = 2k + 1),
and Even(x) := 3k (x = 2k). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

b) Prove that the claim holds.



Problem 7 - Direct Proof

a) Let the domain of discourse be integers. Define the predicates 0dd(x) := 3k(x = 2k + 1),
and Even(x) := 3k (x = 2k). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

Work on part (a) of this problem with the people around you, and then we’ll go over it
together!
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Problem 7 - Direct Proof

a) Let the domain of discourse be integers. Define the predicates 0dd(x) := 3k(x = 2k + 1),
and Even(x) := 3k (x = 2k). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

Van((Even(n) A Odd(m)) - 0dd(n + m))



Problem 7 - Direct Proof

a) Let the domain of discourse be integers. Define the predicates 0dd(x) := 3k(x = 2k + 1),
and Even(x) := 3k (x = 2k). Translate the following claim into predicate logic:

The sum of an even and odd integer is odd.

b) Prove that the claim holds.

Lets walk through part (b) together!



] Odd(x) == 3k(x =2k + 1)
Problem 7 - Direct Proof Even(x) = 3k(x = 20)
alim:

b) Prove that the claim holds. vnvm((Even(n) A 0dd(m)) - 0dd(n + m))



] Odd(x) ==3k(x =2k + 1)
Problem 7 - Direct Proof Even() :=3k(x = 2k)

Claim:

b) Prove that the claim holds. vnvm((Even(n) A 0dd(m)) - 0dd(n + m))

Let n and m be arbitrary integers.

Since n and m were arbitrary, the sum of any even and odd integer is odd.



] 0dd(x) :==3k(x =2k + 1)
Problem 7 - Direct Proof Even() :=3k(x = 2k)

Claim:

b) Prove that the claim holds. vnvm((Even(n) A 0dd(m)) - 0dd(n + m))

Let n and m be arbitrary integers. Suppose n is even and m is odd.

Thus by (some reasoning here), n + m is odd. Since n and m were arbitrary, the sum of any
even and odd integer is odd.



] 0dd(x) :==3k(x =2k + 1)
Problem 7 - Direct Proof glve;n@c) = 3k(x = 2k)
alm:

b) Prove that the claim holds. vnvm((Even(n) A 0dd(m)) - 0dd(n + m))

Let n and m be arbitrary integers. Suppose n is even and mis odd. Then by definition of
even, n = 2k forsome integer k. By definition of odd, m = 2j + 1 for some integer j.

Then n + mis 2 times an integer plus 1. Thus by definition of odd, n + m is odd.
Since n and m were arbitrary, the sum of any even and odd integer is odd.



] 0dd(x) :==3k(x =2k + 1)
Problem 7 - Direct Proof Even() :=3k(x = 2k)

Claim:

b) Prove that the claim holds. vnvm((Even(n) A 0dd(m)) - 0dd(n + m))

Let n and m be arbitrary integers. Suppose n is even and m is odd. Then by definition of
even, n = 2k for some integer k. By definition of odd, m = 2j + 1 for some integer j.

Then consider n + m:

n+m=2k+2j+1

Then n + m s 2 times an integer plus 1. Thus by definition of odd, n + m is odd.
Since n and m were arbitrary, the sum of any even and odd integer is odd.



] 0dd(x) :==3k(x =2k + 1)
Problem 7 - Direct Proof Even() :=3k(x = 2k)

Claim:

b) Prove that the claim holds. vnvm((Even(n) A 0dd(m)) - 0dd(n + m))

Let n and m be arbitrary integers. Suppose n is even and m is odd. Then by definition of
even, n = 2k forsome integer k. By definition of odd, m = 2j + 1 for some integer j.

Then consider n + m:
n+m=2k+2j+1
=2(k+j)+1

Then n + mis 2 times an integer plus 1. Thus by definition of odd, n + m is odd.
Since n and m were arbitrary, the sum of any even and odd integer is odd.



] 0dd(x) :==3k(x =2k + 1)
Problem 7 - Direct Proof glve;n(»o = 3k(x = 2k)
alm:

b) Prove that the claim holds. vnvm((Even(n) A 0dd(m)) - 0dd(n + m))

Let n and m be arbitrary integers. Suppose n is even and m is odd. Then by definition of
even, n = 2k for some integer k. By definition of odd, m = 2j + 1 for some integer j.

Then consider n + m:

n+m=2k+2j+1
=2(k+j)+1

Since k and j are integers, k + j is an integer.
Then n + mis 2 times an integer plus 1. Thus by definition of odd, n + m is odd.
Since n and m were arbitrary, the sum of any even and odd integer is odd.



Problem 7 - Proof of Biconditional

a) Let the domain of discourse be integers. Define the predicates 0dd(x) := 3k(x = 2k + 1),
and Even(x) := 3k (x = 2k). Translate the following claim into predicate logic:

For all integers n,n — 4 is even if and only if n + 17 is odd.

b) Prove that the claim holds.



Problem 7 - Proof of Biconditional

a) Let the domain of discourse be integers. Define the predicates 0dd(x) := 3k(x = 2k + 1),
and Even(x) := 3k (x = 2k). Translate the following claim into predicate logic:

For allintegers n,n — 4 is even if and only if n + 17 is odd.

Work on part (a) of this problem with the people around you, and then we’ll go over it
together!



Problem 7 - Proof of Biconditional

a) Let the domain of discourse be integers. Define the predicates 0dd(x) := 3k(x = 2k + 1),
and Even(x) := 3k (x = 2k). Translate the following claim into predicate logic:

For all integers n,n — 4 is even if and only if n + 17 is odd.

vn(Even(n — 4) « 0dd(n + 17))



Problem 7 - Proof of Biconditional

a) Let the domain of discourse be integers. Define the predicates 0dd(x) := 3k(x = 2k + 1),
and Even(x) := 3k (x = 2k). Translate the following claim into predicate logic:

For all integers n,n — 4 is even if and only if n + 17 is odd.

b) Prove that the claim holds.

Lets walk through part (b) together!



n . u Odd(x) = ak(x =2k + 1)
Problem 7 - Proof of Biconditional Even(x) i= 3k(x = 2k)

Claim:
b) Prove that the claim holds. vn(Even(n — 4) < 0dd(n + 17))



0dd(x) :==3k(x =2k + 1)

Problem 7 - Proof of Biconditional Even(x) = 3k<x;%k>
alm:
b) Prove that the claim holds. vn(Even(n — 4) < 0dd(n + 17))

We know that a biconditional p <» g can be equivalently expressed as two implications anded

together: p = q A q = p. So, in order to prove a biconditional, we need to prove both implications
hold.

For this problem, we need to prove both the forward direction:
vn(Even(n — 4) -» 0dd(n + 17))

And the backward direction:
vn(0dd(n + 17) - Even(n — 4))

By showing both implications hold, we prove that the biconditional holds.



0dd(x) :==3k(x =2k + 1)

Problem 7 - Proof of Biconditional Even(x) = 3k<x;%k>
alm:
b) Prove that the claim holds. vn(Even(n — 4) < 0dd(n + 17))

= Let n be an arbitrary integer.

Since n was arbitrary, we have shown that for all integers n thatif n — 4 is even, thenn + 17 is
odd.



0dd(x) :==3k(x =2k + 1)

Problem 7 - Proof of Biconditional Even(x) = 3k<x;%k>
alm:
b) Prove that the claim holds. vn(Even(n — 4) < 0dd(n + 17))

= Let n be an arbitrary integer. Suppose that n — 4 is even. Then by definition of even, n — 4 = 2k
for some integer k. Then observe that:

n—4 =2k
n+17 = 2k + 21 Adding 21 to both sides
n+17 =2(k +10) +1 Factoring

Thusn+ 17 = 2(k + 10) + 1.

Since k is an integer, k + 10 is an integer. Son + 17 is 2 times an integer plus 1. Thus by definition
of odd, n + 17 is odd.

Since n was arbitrary, we have shown that for all integers n thatif n — 4 is even, thenn + 17 is
odd.



0dd(x) :==3k(x =2k + 1)

Problem 7 - Proof of Biconditional Even(x) = 3k<x;%k>
alm:
b) Prove that the claim holds. vn(Even(n — 4) < 0dd(n + 17))

< Letn be an arbitrary integer.

Since n was arbitrary, we have shown that for all integers n, if n + 17 is odd, then n — 4 is even.



0dd(x) :==3k(x =2k + 1)

Problem 7 - Proof of Biconditional Even(x) = 3k<x;%k>
alm:
b) Prove that the claim holds. vn(Even(n — 4) < 0dd(n + 17))

& Let n be an arbitrary integer. Suppose n + 17 is odd. Then by definition of odd, n + 17 = 2k +
1 for some integer k. Then observe that:

n+17 =2k +1

n—4=2k+1-21 Subtracting 21 from both sides
n—4=2(k—10) Factoring

Thusn —4 = 2(k — 10).
Since k is an integer, k — 10 is an integer. Son — 4 is 2 times an integer.

So by definition of even, n — 4 is even. Since n was arbitrary, we have shown that for all integers n,
ifn+ 17 is odd, then n — 4 is even.



0dd(x) = 3k(x = 2k + 1)

Problem 7 - Proof of Biconditional Even(x) = 3k<x;%k>
alm:
b) Prove that the claim holds. vn(Even(n — 4) < 0dd(n + 17))

= Let n be an arbitrary integer. Suppose thatn — 4 is even. Then by definition of even,n — 4 = 2k for some
integer k. Then observe that:

n—4=2%k
n+17 =2k + 21 Adding 21 to both sides
n+17=2(k+10)+1 Factoring

Thusn + 17 = 2(k + 10) + 1. Since k isaninteger, k + 10 is aninteger. Son + 17 is 2 times an integer plus 1.
Thus by definition of odd, n + 17 is odd. Since n was arbitrary, we have shown that for all integers nthatifn — 4
iseven, thenn + 17 is odd.

& Let n be an arbitrary integer. Suppose n + 17 is odd. Then by definition of odd, n + 17 = 2k + 1 for some
integer k. Then observe that:

n+17=2k+1

n—4=2k+1-21 Subtracting 21 from both sides

n—4=2(k —10) Factoring
Thusn — 4 = 2(k — 10). Since k is aninteger, k — 10 is an integer. Son — 4 is 2 times an integer. So by
definition of even, n — 4 is even. Since n was arbitrary, we have shown that for all integers n, ifn + 17 is odd,
thenn — 4 is even.



That's All, Folks!

Thanks for coming to section this week!
Any questions?




