
Uncountability CSE 311 Autumn 24

Lecture 28

Miscellaneous Announcements

CC29 (from Friday’s lecture) will be due Monday at 11:59 PM.

CC30 re-asks you the survey questions from CC0 over again (along with
some extra ones),

Please fill out course evals---they really help us update the course.

Punchline for Today’s Lecture

There are more functions than there are computer programs.

So for some functions there just isn’t a computer program that
computes it.

Outline

Some definitions – what do we mean by “more”?

How many programs are there?

Proving there are more functions.

Sizes of sets

How do we know two sets are the same size?

Easy. Count the number of elements in both.

That works great for finite sets, but ∞ isn’t really a number we get to
count to…

More Practical

What does it mean that two sets have the same size?

More Practical

What does it mean that two sets have the same size?

Two Requirements for a Bijection

A function 𝑓: 𝐴 → 𝐵 maps every element of 𝐴 to one element of 𝐵

𝐴 is the “domain”, 𝐵 is the “co-domain”

That is, every output has at most one possible input.

A function 𝒇 is one-to-one iff

∀𝒂∀𝒃(𝒇 𝒂 = 𝒇 𝒃 → 𝒂 = 𝒃)

One-to-one (aka injection)

Two Requirements for a Bijection

A function 𝑓: 𝐴 → 𝐵 maps every element of 𝐴 to one element of 𝐵

𝐴 is the “domain”, 𝐵 is the “co-domain”

Every output has at least one input that maps to it.

A function 𝒇: 𝑨 → 𝑩 is onto iff

∀𝒃 ∈ 𝑩∃𝒂 ∈ 𝑨(𝒃 = 𝒇(𝒂))

Onto (aka surjection)

Bijection

A bijection maps every element of the domain to exactly one element of
the co-domain, and every element of the domain to exactly one
element of the domain.

A function 𝒇 is one-to-one iff

∀𝒂∀𝒃(𝒇 𝒂 = 𝒇 𝒃 → 𝒂 = 𝒃)

One-to-one (aka injection)

A function 𝒇: 𝑨 → 𝑩 is onto iff

∀𝒃 ∈ 𝑩∃𝒂 ∈ 𝑨(𝒃 = 𝒇(𝒂))

Onto (aka surjection)

A function 𝒇: 𝑨 → 𝑩 is a bijection iff

 𝒇 is one-to-one and onto

Bijection

Definition

This matches our intuition on finite sets.

But it also works for infinite sets!

Let’s see just how infinite these sets are.

Two sets 𝑨, 𝑩 have the same size (same cardinality)

if and only if there is a bijection 𝒇: 𝑨 → 𝑩

Some infinite sets

Two sets 𝑨, 𝑩 have the same size (same cardinality)

if and only if there is a bijection 𝒇: 𝑨 → 𝑩

Let’s compare the sizes of: ℕ, ℤ, {𝑥 ∶ 𝑥 is an even integer}

Pollev.com/robbie

They’re all the same size.

ℤ and even integers?

𝑓 𝑥 = 2𝑥 Is it a bijection?

𝑓 𝑥 = 𝑓 𝑦 → 2𝑥 = 2𝑦 → 𝑥 = 𝑦;

If 𝑧 is even then 𝑧 = 2𝑘 for some integer 𝑘 and 𝑓 𝑘 = 𝑧.

ℕ and ℤ

g 𝑥 = ቐ

𝑥

2
 if 𝑥 is even

−
𝑥+1

2
 if 𝑥 is odd

They’re all the same size…

ℕ and even integers?

𝑔(𝑓 𝑥) will work nicely. You can also build one explicitly.

Good exercise: show that if 𝑓 and 𝑔 are bijections then 𝑓 ∘ 𝑔 is also a
bijection.

Countable

ℕ, ℤ, {𝑥: 𝑥 is an even integer} are all countable.

To build a bijection from 𝑨 to ℕ, just list all the elements!

The set 𝐴 is countable iff there is an injection from 𝑨 to ℕ,

Equivalently, 𝑨 is countable iff it is finite or there is a

bijection from 𝑨 to ℕ

Countable

Let’s Try one that’s a little harder

What about ℚ. There’s gotta be more of those right?

It’s pretty intuitive to think there are more rationals than integers.

The rationals are dense.

Between every two rationals, there’s another rational number.

Or said in more intimidating fashion: between every two rationals there
are infinitely many others!

The set of positive rational numbers

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...

3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...

4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...

5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...

6/1 6/2 6/3 6/4 6/5 6/6 ...

7/1 7/2 7/3 7/4 7/5

...

In bijection with the natural numbers

Order the rationals by their denominator (increasing), breaking ties by
numerator.

1/1, 1/2, 1/3,2/3,1/4,3/4,1/5,2/5,3/5,4/5,1/6, …

𝑓 𝑥 =the 𝑥th number in that list (indexed from 0)

That’s a bijection from ℕ to ℚ+(it’s not a nice clean formula, but it’s
definitely a function)

In Bijection with the natural numbers

How do we get all of ℚ?

We already know how to “get twice as many” – map the even naturals
to positives, and the odds to negatives. Like when we were mapping ℕ
to ℤ.

Fun fact:

The “order via diagonals” technique is closely related to “dovetailing” a
super-useful technique in compuatability theory (take 431 to learn
more)

Uncountable

Alright. There are clever ways to build bijections.

Is there anything that’s bigger than ℕ?

And…like…how would we prove it?

A proof idea

A set is countable iff it can be listed (a list is a bijection with ℕ).

We’ll take advantage of that to find an uncountable set.

Claim ℝ is uncountable.

Actually, it’s easier if we show [0,1) is uncountable (i.e. real numbers
between 0 and 1).

What do real numbers look like

0. 3 3 3 3 3 3 3 3…

0. 2 7 2 7 2 8 5 4…

0. 1 4 1 5 9 2 6 5…

0. 2 2 2 2 2 2 2 2…

0. 1 2 3 4 5 6 7 8…

0. 9 8 7 6 5 4 3 2…

0. 8 2 7 6 4 5 7 4…

0. 5 9 4 2 7 5 1 7…

A string of digits!

Well not a “string” An

infinitely long sequence of

digits is more accurate.

Uncountable

Suppose, for the sake of contradiction, that [0,1) is countable.

Then there is a bijection 𝑓: ℕ → [0,1).

Use that bijection to make the following table…

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits

after

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits

after

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Goal: find a real number

between 0 and 1 that isn’t on

our table.

(contradiction to bijection)

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits

after

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

How do we find a number

that’s not in our list?

Well let’s make sure whatever

our number is, it’s not 𝑓(0)

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits

after

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Well let’s make sure whatever

our number is, it’s not 𝑓(0)

Set the 0 column to not 3,

say…7.

0.7

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits

after

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Well let’s make sure whatever

our number is, it’s not 𝑓(1)

Set the 1 column to not 7,

say…3.

0.73

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits

after

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Well let’s make sure whatever

our number is, it’s not 𝑓(2)

Set the 2 column to not 1,

say…7.

0.737

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

Number Digits

after

decimal

0 1 2 3 4 5 6 7 …

𝑓(0) 0. 3 3 3 3 3 3 3 3 …

𝑓(1) 0. 2 7 2 7 2 8 5 4 …

𝑓(2) 0. 1 4 1 5 9 2 6 5 …

𝑓(3) 0. 2 2 2 2 2 2 2 2 …

𝑓(4) 0. 1 2 3 4 5 6 7 8 …

𝑓(5) 0. 9 8 7 6 5 4 3 2 …

𝑓(6) 0. 8 2 7 6 4 5 7 4 …

𝑓(7) 0. 5 9 4 2 7 5 1 7 …

… … … … … … … … … … …

Flipping Rule: let’s set the 𝑖𝑡ℎ

column to:

𝟕 if 𝒇(𝒊)’s 𝒊𝒕𝒉 column is not 𝟕
𝟑 if 𝒇 𝒊 ′𝒔 𝒊𝒕𝒉 column is 𝟕.

0.73777733…

Wrapping Up

 0.73777733…

What is it?

It’s a real number between 0 and 1(!!!)

Is the number on the list? Well it’s not 𝑓(0), they differ in column 0.

It’s not 𝑓 1 , they differ in column 1.

It’s not 𝑓(𝑖), they differ in column 𝑖.

But…𝑓 was a bijection. That’s a contradiction!

Diagonalization

This proof technique is called diagonalization

Often “Cantor’s Diagonalization” (after Cantor, who developed it).

Takeaway 1

There are differing levels of infinity.

Some infinite sets are equal in size.

Other infinite sets are bigger than others.

If this is mind-bending you’re in good company.

Cantor’s contemporaries accused him of being a “scientific charlatan”
and a “corruptor of youth”

But Cantor was right – and his ideas eventually were recognized as
correct.

Let’s Do Another!

Let 𝐵 = 0,1 . Call a function 𝑔: ℕ → 𝐵 a “binary valued function”

Intuitively, 𝑔 would be something like
public boolean g(BigInteger input){ }

If we could write that 𝑔 in Java.

How many possible 𝑔: ℕ → 𝐵 are there?

Proof that [0,1) set of binary-valued
functions is not countable
Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to

function

Output

on 𝟎
Output

on 1

Output

on 2

Output

on 3

Output

on 4

Output

on 5

Output

on 6

Output

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to

function

Output

on 𝟎
Output

on 1

Output

on 2

Output

on 3

Output

on 4

Output

on 5

Output

on 6

Output

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

Goal: find a function 𝑔𝑑𝑖𝑎𝑔: ℕ → 0,1

that isn’t on our table.

(contradiction to bijection)

Proof that [0,1) set of binary-valued functions
is not countable

Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to

function

Output

on 𝟎
Output

on 1

Output

on 2

Output

on 3

Output

on 4

Output

on 5

Output

on 6

Output

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on

our list?

Well to make sure it’s not 𝑓(0) (the

function in the first row)

Have 𝑔𝑑𝑖𝑎𝑔 0 = 0

Proof that [0,1) set of binary-valued functions
is not countable

𝑔𝑑𝑖𝑎𝑔 𝑥 = ቐ
0 𝑖𝑓 𝑥 = 1

…
…

Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to

function

Output

on 𝟎
Output

on 1

Output

on 2

Output

on 3

Output

on 4

Output

on 5

Output

on 6

Output

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on

our list?

Well to make sure it’s not 𝑓(0) (the

function in the first row)

Have 𝑔𝑑𝑖𝑎𝑔 0 = 0

Proof that [0,1) set of binary-valued functions
is not countable

𝑔𝑑𝑖𝑎𝑔 𝑥 = ቐ
0 𝑖𝑓 𝑥 = 1

…
…

Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to

function

Output

on 𝟎
Output

on 1

Output

on 2

Output

on 3

Output

on 4

Output

on 5

Output

on 6

Output

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on

our list?

Well to make sure it’s not 𝑓(𝑖) (the

function in the 𝑖𝑡ℎ row)

Have 𝑔𝑑𝑖𝑎𝑔 𝑖 = 1 − 𝑓 𝑖 𝑖

Proof that [0,1) set of binary-valued functions
is not countable

𝑔𝑑𝑖𝑎𝑔 𝑥 = ቐ
0 𝑖𝑓 𝑥 = 1

…
…

Suppose, for the sake of contradiction, that there is a list of them:

𝒇 bijection

from ℕ to

function

Output

on 𝟎
Output

on 1

Output

on 2

Output

on 3

Output

on 4

Output

on 5

Output

on 6

Output

on 7

…

𝑓(0) 1 0 1 1 1 0 1 1 …

𝑓(1) 0 1 1 0 0 1 0 0 …

𝑓(2) 1 1 1 0 0 0 1 1 …

𝑓(3) 0 0 0 0 0 0 0 0 …

𝑓(4) 1 0 1 1 1 0 1 1 …

𝑓(5) 0 0 0 1 0 1 1 1 …

𝑓(6) 1 1 0 1 0 1 1 0 …

𝑓(7) 0 2 0 1 1 0 1 0 …

… … … … … … … … … …

How do we find a function not on

our list?

Well to make sure it’s not 𝑓(𝑖) (the

function in the 𝑖𝑡ℎ row)

Have 𝑔𝑑𝑖𝑎𝑔 𝑖 = 1 − 𝑓 𝑖 𝑖

Proof that [0,1) set of binary-valued functions
is not countable

𝑔𝑑𝑖𝑎𝑔 𝑥 = ቐ
1 𝑖𝑓 𝑓 𝑥 outputs 0 on input 𝑥

0 𝑖𝑓 𝑓 𝑥 outputs 0 on input 𝑥

Wrapping up the proof

Wrapping up the proof.

Observe that 𝑔𝑑𝑖𝑎𝑔 is a fully-defined function, and that it has ℕ as its
domain and {0,1} as its codomain. It therefore should be in the co-
domain of 𝑓. But it cannot be on the list, as 𝑔(𝑖) is different from the
function in the 𝑖𝑡ℎ row on input 𝑖 for all 𝑖.

This contradicts 𝑓 being onto! So we have that the set of binary-valued
functions (with ℕ as their domains) is uncountable.

Our Second big takeaway

How many Java methods can we write:

public boolean g(int input) ?

Can you list them?

Yeah!! Put them in lexicographic order

i.e. in increasing order of length, with ties broken by alphabetical order.

Wait…that means the number of such Java programs is countable.

And…the number of functions we’re supposed to write is uncountable.

Our Second big takeaway

There are more functions 𝑔: ℕ → 𝐵 than there are Java programs to
compute them.

Some function must be uncomputable.

That is there is no piece of code which tells you the output of the
function when you give it the appropriate input.

Not just Java

This isn’t just about java programs. (all we used about java was that its
programs are strings)…that’s…well every programming language.

There are functions that simply cannot be computed.

Doesn’t matter how clever you are. How fancy your new programming
language is. Just doesn’t work.*

*there’s a difference between int and ℕ here, for the proof to work you
really need all integers to be valid inputs, not just integers in a certain range.

Does this matter?

It’s even worse than that – almost all functions are not computable.

So…how come this has never happened to you?

This might not be meaningful yet. Almost all functions are also
inexpressible in a finite amount of English (English is a language too!)

You’ve probably never decided to write a program that computes a
function you couldn’t describe in English…

Are there any problems anyone is interested in solving that aren’t
computable?

The Halting Problem

A Practical Uncomputable Problem

Ever pressed the run button on your code and have it take a long time?

Like an infinitely long time?

What didn’t your compiler…like, tell you not to push the button yet.

It tells you when your code doesn’t compile before it runs it…why
doesn’t it check for infinite loops?

The Halting Problem

This would be super useful to solve!

We can’t solve it…we’ll find out why on Friday.

Given: source code for a program 𝑷 and 𝒙 an input we could give to 𝑷
Return: True if 𝑷 will halt on 𝒙, False if it runs forever (e.g. goes in an

infinite loop or infinitely recurses)

The Halting Problem

	Slide 1: Uncountability
	Slide 2: Miscellaneous Announcements
	Slide 3: Punchline for Today’s Lecture
	Slide 4: Outline
	Slide 5: Sizes of sets
	Slide 6: More Practical
	Slide 7: More Practical
	Slide 8: Two Requirements for a Bijection
	Slide 9: Two Requirements for a Bijection
	Slide 10: Bijection
	Slide 11: Definition
	Slide 12: Some infinite sets
	Slide 13: They’re all the same size.
	Slide 14: They’re all the same size…
	Slide 15: Countable
	Slide 16: Let’s Try one that’s a little harder
	Slide 17: The set of positive rational numbers
	Slide 18: In bijection with the natural numbers
	Slide 19: In Bijection with the natural numbers
	Slide 20: Uncountable
	Slide 21: A proof idea
	Slide 22: What do real numbers look like
	Slide 23: Uncountable
	Slide 24: Proof that open bracket 0,1 close paren is not countable
	Slide 25: Proof that open bracket 0,1 close paren is not countable
	Slide 26: Proof that open bracket 0,1 close paren is not countable
	Slide 27: Proof that open bracket 0,1 close paren is not countable
	Slide 28: Proof that open bracket 0,1 close paren is not countable
	Slide 29: Proof that open bracket 0,1 close paren is not countable
	Slide 30: Proof that open bracket 0,1 close paren is not countable
	Slide 31: Wrapping Up
	Slide 32: Diagonalization
	Slide 33: Takeaway 1
	Slide 34: Let’s Do Another!
	Slide 35: Proof that open bracket 0,1 close paren set of binary-valued functions is not countable
	Slide 36: Proof that open bracket 0,1 close paren set of binary-valued functions is not countable
	Slide 37: Proof that open bracket 0,1 close paren set of binary-valued functions is not countable
	Slide 38: Proof that open bracket 0,1 close paren set of binary-valued functions is not countable
	Slide 39: Proof that open bracket 0,1 close paren set of binary-valued functions is not countable
	Slide 40: Proof that open bracket 0,1 close paren set of binary-valued functions is not countable
	Slide 41: Wrapping up the proof
	Slide 42: Our Second big takeaway
	Slide 43: Our Second big takeaway
	Slide 44: Not just Java
	Slide 45: Does this matter?
	Slide 46: The Halting Problem
	Slide 47: A Practical Uncomputable Problem
	Slide 48: The Halting Problem

