
Finite State Machines CSE 311 Autumn 2024

Lecture 23

Last 2.5 Weeks

What computers can and can’t do…
Given any finite amount of time.

We’ll start with a simple model of a computer – finite state machines.

What do we want computers to do? Let’s start very simple.
We’ll give them an input (in a string format), and we want them to say
“yes” or “no” for that string on a certain question.
Example questions one might want to answer.
Does this input java code compile to a valid program?

Does this input string match a particular regular expression?

Is this input list sorted?

Depending on the “computer” some questions might be out of reach.

Deterministic Finite Automaton

Our machine is going to get a string as input.

It will read one character at a time and update “its state.”

At every step, the machine thinks of itself as in one of the

(finite number) vertices.

When it reads the character it follows the arrow labeled

with that character to its next state.

Start at the “start state” (unlabeled, incoming arrow).

After you’ve read the last character, accept the string if

and only if you’re in a “final state” (double circle).

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Deterministic Finite Automata

Some more requirements:

Every machine is defined with respect to an alphabet Σ

Every state has exactly one outgoing edge for every character in Σ.

There is exactly one start state; can have as many accept states (aka final
states) as you want – including none.

Deterministic Finite Automata

Can also represent transitions with a table.

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Deterministic Finite Automata

What is the language of this DFA?

I.e. the set of all strings it accepts?

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Deterministic Finite Automata

If the string has 111, then you’ll end up in 𝑠3 and never leave.

If you end with a 0 you’re back in 𝑠0 which also accepts.

And…𝜀 is also accepted

0 ∪ 1 ∗111 0 ∪ 1 ∗ ∪ 0 ∪ 1 ∗0 ∗

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Design some DFAs

Let Σ = {0,1,2}

𝑀1 should recognize “strings with an even number of 2’s.

What do you need to remember?

𝑀2 should recognize “strings where the sum of the digits is congruent
to 0 (𝑚𝑜𝑑 3)”

Design some DFAs

Let Σ = {0,1,2}

𝑀1 should recognize “strings with an even number of 2’s.

𝑀2 should recognize “strings where the sum of the digits is congruent
to 0 (𝑚𝑜𝑑 3)"

s1 s02

2

0,10,1

2

00

𝑡1

𝑡2

𝑡0

1

2
2

1

1
0

Designing DFAs notes

DFAs can’t “count arbitrarily high”

For example, we could not make a DFA that remembers the overall sum
of all the digits (not taken % 3)

That would have infinitely many states! We’re only allowed a finite
number.

s0t0 s1t0

s0t1

s0t2 s1t1

s1t2

Strings over {0,1,2} w/ even number of 2’s
and sum%3=0

s0t0 s1t0

s0t1

s0t2 s1t1

s1t2
2

2

2

2

2

2

1

1

1

1

1

1

0

0 0

0 0

0

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Changed notation –

final states with bold

outlines.

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

Called the “cross product”

construction (because you have a set

of states equal to 𝑄1 × 𝑄2 where

first two DFAs had states 𝑄1, 𝑄2.

A very common trick to combine

DFAs.

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Changed notation –

final states with bold

outlines.

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

Called the “cross product”

construction (because you have a set

of states equal to 𝑄1 × 𝑄2 where

first two DFAs had states 𝑄1, 𝑄2.

A very common trick to combine

DFAs. “even # 2’s” “odd # 2’s”

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Changed notation –

final states with bold

outlines.

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

Called the “cross product”

construction (because you have a set

of states equal to 𝑄1 × 𝑄2 where

first two DFAs had states 𝑄1, 𝑄2.

A very common trick to combine

DFAs.

“sum%3 = 0”

“sum%3 = 1”

“sum%3 = 2”

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s OR
sum%3=0

Want to

change the

and to or –

don’t need to

change states

or transitions…

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s OR
sum%3=0

Want to change

the and to or –

don’t need to

change states or

transitions…

Just which accept.

The set of binary strings with a 1 in the 3 rd
position from the start

s0 s2 As1

10,10,1

0,1

R

0

0,1

The set of binary strings with a 1 in the 3 rd
position from the start

The set of binary strings with a 1 in the 3 rd
position from the end

What do we need to remember?

We can’t know what string was third from the end until we have read
the last character.

So we’ll need to keep track of “the character that was 3 ago” in case this
was the end of the string.

But if it’s not…we’ll need the character 2 ago, to update what the
character 3 ago becomes. Same with the last character.

3 bit shift register

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

“Remember the last three bits”

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

10

00 01 10 11

1
1

1

0

0 0

0 0 0 0
1

1

1

1

The set of binary strings with a 1 in the 3 rd position from the end

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

The set of binary strings with a 1 in the 3 rd position from the end

The beginning versus the end

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

s

0

s

2
As

1

10,10,1

0,1

R

0 0,1

From the beginning was “easier” than “from
the end”

At least in the sense that we needed fewer states.

That might be surprising since a java program wouldn’t be much
different for those two.

Not being able to access the full input at once limits your abilities
somewhat and makes some jobs harder than others.

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

#1s even #1s odd

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

#0s even

#0s odd

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

#0s is congruent to #1s (mod 2)

Wait…there’s an easier way to

describe that….

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

That’s all binary strings of even

length.

s0 s1

0,1

0,1

Takeaways

The first DFA might not be the simplest.

Try to think of other descriptions – you might realize you can keep track
of fewer things than you thought.

Boy…it’d be nice if we could know that we have the smallest possible
DFA for a given language…

DFA Minimization

We can know!

Fun fact: there is a unique minimum DFA for every language (up to
renaming the states)

High level idea – final states and non-final states must be different.

Otherwise, hope that states can be the same, and iteratively separate
when they have to go to different spots.

In some quarters, we cover it in detail. But…we ran out of time.
Optional slides will be posted – won’t be required in HW or final but
you might find it useful/interesting for your own learning.

Next Time

What if we give the DFAs a little more power…try to get them to do
more things.

Optional Content:
Machines with output

What are FSMs used for?

“Classic” hardware applications:

Anything where you only need to remember a very small amount of
information, and have very simple update rules.

Vending machines

Elevators: need to know whether you’re going up or down, where
people want to go, where people are waiting, and whether you’re going
up or down. Simple rules to transition.

These days…general hardware is cheap, less likely to use custom
hardware. BUT the programmer was probably still thinking about FSMs
when writing the code.

What are FSMs used for?

Theoretically – still lots of applications.

 grep uses FSMs to analyze regular expressions (more on this later).

Useful for modeling situations where you have minimal memory.

Good model for simple AI (say simple NPCs in games).

Technically all of our computers are finite state machines…
But they’re not usually how we think about them…more on this next week.

Adding Output to Finite State Machines

So far we have considered finite state machines that just accept/reject
strings
called “Deterministic Finite Automata” or DFAs

One can also consider finite state machines that with output
These are often used as controllers

Vending Machine

Enter 15 cents in dimes or nickels

Press S or B for a candy bar

Vending Machine v0.1

Vending Machine, v0.1

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

0 5 10 15

D D

N N N, D

B, S

Vending Machine v0.2

0 5 10 15

D D

N N N, D

B, S

Vending Machine, v0.2

Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

0’

[B]
5 10

15

15’

[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D B

S

S

Vending Machine, v1.0

Adding additional “unexpected” transitions to cover all symbols for each state

0’
[B]

5 10

15

15’
[N]

0

0”

[S]

N

N

N

N

N

B

D

D

D

D

D
B

S

S

15”

[D]S

B

B,S

B,S

B,S

B,S
B,S

N

N

N

D

D

D

	Slide 1: Finite State Machines
	Slide 2: Last 2.5 Weeks
	Slide 3: Deterministic Finite Automaton
	Slide 4: Let’s see an example
	Slide 5: Let’s see an example
	Slide 6: Let’s see an example
	Slide 7: Let’s see an example
	Slide 8: Let’s see an example
	Slide 9: Let’s see an example
	Slide 10: Deterministic Finite Automata
	Slide 11: Deterministic Finite Automata
	Slide 12: Deterministic Finite Automata
	Slide 13: Deterministic Finite Automata
	Slide 14: Design some DFAs
	Slide 15: Design some DFAs
	Slide 16: Designing DFAs notes
	Slide 17
	Slide 18: Strings over {0,1,2} w/ even number of 2’s and sum%3=0
	Slide 19: Strings over {0,1,2} w/ even number of 2’s and sum%3=0
	Slide 20: Strings over {0,1,2} w/ even number of 2’s and sum%3=0
	Slide 21: Strings over {0,1,2} w/ even number of 2’s and sum%3=0
	Slide 22: Strings over {0,1,2} w/ even number of 2’s and sum%3=0
	Slide 23: Strings over {0,1,2} w/ even number of 2’s OR sum%3=0
	Slide 24: Strings over {0,1,2} w/ even number of 2’s OR sum%3=0
	Slide 25
	Slide 26: The set of binary strings with a 1 in the 3rd position from the start
	Slide 27
	Slide 28: 3 bit shift register
	Slide 29: The set of binary strings with a 1 in the 3rd position from the end
	Slide 30: The set of binary strings with a 1 in the 3rd position from the end
	Slide 31: The beginning versus the end
	Slide 32: From the beginning was “easier” than “from the end”
	Slide 33: What language does this machine recognize?
	Slide 34: What language does this machine recognize?
	Slide 35: What language does this machine recognize?
	Slide 36: What language does this machine recognize?
	Slide 37: What language does this machine recognize?
	Slide 38: Takeaways
	Slide 39: DFA Minimization
	Slide 40: Next Time
	Slide 41: Optional Content: Machines with output
	Slide 42: What are FSMs used for?
	Slide 43: What are FSMs used for?
	Slide 44: Adding Output to Finite State Machines
	Slide 45: Vending Machine
	Slide 46: Vending Machine v0.1
	Slide 47: Vending Machine, v0.1
	Slide 48: Vending Machine v0.2
	Slide 49: Vending Machine, v0.2
	Slide 50: Vending Machine, v1.0

