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Where Are We?

We’re working our way up to proving theorems about computation

A statement like “there is no Java program that solves this problem”

Before we get there, we’ve got a grab bag of background topics.

The mathematical model for programs is defining a language, so we’re 
seeing different tools computer scientists use to do that.
The set of all inputs that will cause the program to return true.

Last time: Regular expressions: a common practical tool

Today: CFGs: a key to defining a programming language



Context Free Grammars

Another way of defining a language



What Can’t Regular Expressions Do?

Some easy things 
Things where you could say whether a string matches with just a loop
{0𝑘1𝑘: 𝑘 ≥ 0}

The set of all palindromes.

And some harder things

Expressions with matched parentheses

Properly formed arithmetic expressions

Context Free Grammars can solve all of these problems!



Context Free Grammars

A context free grammar (CFG) is a finite set of production rules over:
An alphabet Σ of “terminal symbols”

A finite set 𝑉 of “nonterminal symbols”

A start symbol (one of the elements of 𝑉) usually denoted 𝑆.

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form

𝐴 → 𝑤1 𝑤2 ⋯ |𝑤𝑘

Where each 𝑤𝑖 ∈ 𝑉 ∪ Σ ∗ is a string of nonterminals and terminals.



Context Free Grammars

We think of context free grammars as generating strings.

1. Start from the start symbol 𝑆.

2. Choose a nonterminal in the string, and a production rule 𝐴 →
𝑤1 𝑤2 … |𝑤𝑘 replace that copy of the nonterminal with 𝑤𝑖 .

3. If no nonterminals remain, you’re done! Otherwise, goto step 2.

A string is in the language of the CFG iff it can be generated starting 
from 𝑆.



Examples

𝑆 → 0𝑆0 1𝑆1 0|1|𝜀

𝑆 → 0𝑆|𝑆1|𝜀

𝑆 → 𝑆 𝑆𝑆 𝜀

𝑆 → 𝐴𝐵

𝐴 → 0𝐴1|𝜀

𝐵 → 1𝐵0|𝜀

The alphabet here is {(,)} i.e. parentheses are the characters.



Examples

𝑆 → 0𝑆0 1𝑆1 0|1|𝜀

The set of all binary palindromes

𝑆 → 0𝑆|𝑆1|𝜀

The set of all strings with any 0’s coming before any 1’s (i.e. 0∗1∗)

𝑆 → 𝑆 𝑆𝑆 𝜀

Balanced parentheses

𝑆 → 𝐴𝐵

𝐴 → 0𝐴1|𝜀

𝐵 → 1𝐵0|𝜀    {0𝑗1𝑗+𝑘0𝑘: 𝑗, 𝑘 ≥ 0}



Arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Generate 2 ∗ 𝑥 + 𝑦

Generate 2 + 3 ∗ 4 in two different ways



Arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Generate 2 ∗ 𝑥 + 𝑦

𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 ∗ 𝐸 + 𝐸 ⇒ 2 ∗ 𝐸 + 𝐸 ⇒ 2 ∗ 𝑥 + 𝐸 ⇒
(2 ∗ 𝑥) + 𝑦

Generate 2 + 3 ∗ 4in two different ways

𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

𝐸 ⇒ 𝐸 ∗ 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4



Multiple ways of generating strings

Generate 2 + 3 ∗ 4in two different ways

𝐸 ⇒ 𝐸 + 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

𝐸 ⇒ 𝐸 ∗ 𝐸 ⇒ 𝐸 + 𝐸 ∗ 𝐸 ⇒ 2 + 𝐸 ∗ 𝐸 ⇒ 2 + 3 ∗ 𝐸 ⇒ 2 + 3 ∗ 4

What did we mean by these being different? They represent different 
meanings mathematically.

One says “you’re adding together two numbers: 2 and (whatever 3*4 is)”

The other says “you’re multiplying two numbers: (whatever 2+3 is) and 4”

Those have different meanings!



Parse Trees—remember where parentheses go

Suppose a context free grammar 𝐺 generates a string 𝑥

A parse tree of 𝑥 for 𝐺 has
Rooted at 𝑆 (start symbol)

Children of every 𝐴 node are labeled with the characters of 𝑤 for some 𝐴 → 𝑤

Reading the leaves from left to right gives 𝑥.

𝑆 → 0𝑆0 1𝑆1 0 1 𝜀 
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Back to the arithmetic

𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸 𝐸 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7 8|9

Two parse trees for 2 + 3 ∗ 4
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Why do we care about parsing?

2 + 3 ∗ 4 can only mean one thing!

If I write these symbols in a program, we need to make sure we know 
which one to do.

The first grammar we saw was “ambiguous” it allows the same string to 
“mean” two different things. 

Sometimes you can fix that!



How do we encode order of operations

If we want to keep “in order” we want there to be only one 
possible parse tree. 

Differentiate between “things to add” and “things to multiply”

Only introduce a * sign after you’ve eliminated the possibility of 
introducing another + sign in that area.

𝐸 → 𝑇|𝐸 + 𝑇

𝑇 → 𝐹|𝑇 ∗ 𝐹

𝐹 → 𝐸 |𝑁

𝑁 → 𝑥 𝑦 𝑧 0 1 2 3 4 5 6 7|8|9
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How do Computer Scientists use CFGs?

Most programming languages define valid programs as “strings that fit a CFG” 
That makes sure Java breaks down math expressions correctly! And also code 
like this:

if(i>0)

   if(j>0)

      System.out.println(“hi”);

   else

      System.out.println(“bye”); 

 

if(i>0)

   if(j>0)

      System.out.println(“hi”);

else

   System.out.println(“bye”); 

 

The else could be attached to either “if”! Java needs a rule to decide which it goes with.

Java’s convention makes the one on the left the intuitive whitespace.

(You as a programmer should put braces so the humans reading your code don’t have 

to wonder!)



CFGs in practice

Used to define programming languages. 

Often written in Backus-Naur Form – just different notation

Variables are <names-in-brackets> (or sometimes without)

like <if-then-else-statement>, <condition>, <identifier>

→ is replaced with ∷= or ∶



BNF for C   (no <...> and uses : instead of ::=)



Some fun CFG applications

If we have time



Parse Trees

Remember diagramming sentences in middle school?

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<determiner><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>



Parse Trees

<sentence>::=<noun phrase><verb phrase>

<noun phrase>::=<determiner><adjective><noun>

<verb phrase>::=<verb><adverb>|<verb><object>

<object>::=<noun phrase>

The old man the boat. 



The old man the boat

By Jochen Burghardt - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92742400



English is ambiguous

(Most of ‘standard’) English can be represented as a context free 
grammar.
It’s not perfect (ask Robbie details later).

The grammar is ambiguous! That is, there are sentences which have 
multiple valid parsings (multiple meanings).

Can you find multiple meanings of this sentence:
“Place these 3 exercise balls on the mat at the top of the hill.”

See this video

https://www.youtube.com/watch?v=gznDGyNiDlg


The Important Takeaways



Power of Context Free Languages

There are languages CFGs can express that regular expressions can’t
e.g. palindromes

What about vice versa – is there a language that a regular expression 
can represent that a CFG can’t?
No!

Are there languages even CFGs cannot represent?
Yes!

{0𝑘1𝑗2𝑘3𝑗|𝑗, 𝑘 ≥ 0} cannot be written with a context free grammar. 



Takeaways

CFGs and regular expressions gave us ways of succinctly representing 
sets of strings
Regular expressions super useful for representing things you need to search for

CFGs represent complicated languages like “java code with valid syntax”

Next: (mathematical representations of) Tiny computers! And how they 
relate to regular expressions and CFGs.
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