One-to-one proofs

One-to-one (aka injection)

A function f is one-to-one iff $\forall a \forall b (f(a) = f(b) \rightarrow a = b)$

It's a for-all statement! We know how to prove it.

Let $f: \mathbb{Z} \to \mathbb{Z}$ be the function given by f(x) = x + 5.

Claim: f is one-to-one

Proof:

Onto proofs

Onto (aka surjection)

A function $f: A \rightarrow B$ is onto iff $\forall b \in B \exists a \in A(b = f(a))$

It's a for-all statement, with an exists inside! We know how to prove it.

Let $f: \mathbb{Z} \to \mathbb{Z}$ be the function given by f(x) = x + 5.

Claim: f is onto

Proof:

Directed Graphs

$$G = (V, E)$$

V is a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; <u>i.e.</u> connections from one to the next).

Path $v_0, v_1, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ Simple Path: path with all v_i distinct Cycle: path with $v_0 = v_k$ (and k > 0) Simple Cycle: simple path plus edge (v_k, v_0) with k > 0

Draw the graph!

Let G = (V, E).

 $V = \{1, 2, 3, 4\}$

 $E = \{(1, 1), (1, 2), (2, 3), (3, 4), (4, 1)\}$

Is there a cycle?

Is there a simple cycle?