
Structural Induction CSE 311 Autumn 24

Lecture 18

Induction Big Picture

So far: We used induction to prove a statement over the natural numbers.

“Prove that P(n) holds for all natural numbers n.”

Next goal: In CS, we deal with Strings, Lists, Trees, and other recursively
defined sets. Would like to prove statements over these sets.

“Prove that P(T) holds for all trees T.”

“Prove that P(x) holds for all strings x.”

Recursive Definition of Sets

Define a set 𝑆 as follows:

Basis Step: 0 ∈ 𝑆

Recursive Step: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.

Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a
finite number of recursive steps starting from a basis step.

What is 𝑆?

Recursive Definitions of Sets

We’ll always list the Basis and Recursive parts of the definition.

Starting…now…we’re going to be lazy and skip writing the “exclusion”
rule. It’s still part of the definition.

Recursive Definitions of Sets

All Natural Numbers

Basis Step: 0 ∈ 𝑆

Recursive Step: If 𝑥 ∈ 𝑆 then 𝑥 + 1 ∈ 𝑆.

All Integers

Basis Step: 0 ∈ 𝑆

Recursive Step: If 𝑥 ∈ 𝑆 then 𝑥 + 1 ∈ 𝑆 and 𝑥 − 1 ∈ 𝑆.

Integer coordinates in the line 𝑦 = 𝑥

Basis Step: (0,0) ∈ 𝑆

Recursive Step: If (𝑥, 𝑦) ∈ 𝑆 then (𝑥 + 1, 𝑦 + 1) ∈ 𝑆 and (𝑥 − 1, 𝑦 − 1) ∈ 𝑆.

Recursive Definitions of Sets

Q1: What is this set?

Basis Step: 6 ∈ 𝑆, 15 ∈ 𝑆

Recursive Step: If 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆

Q2: Write a recursive definition for the set of powers of 3 {1,3,9,27, … }

Basis Step:

Recursive Step:

Structural Induction

Every element is built up recursively…

So to show 𝑃(𝑠) for all 𝑠 ∈ 𝑆…

Show 𝑃(𝑏) for all base case elements 𝑏.

Show for an arbitrary element of the set, if 𝑃() holds for that element
then 𝑃() holds for everything you can make out of it.

Structural Induction Example

Let 𝑆 be:
Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Show that every element of 𝑆 is divisible by 3.

Structural Induction

Let 𝑃(𝑥) be “𝑥 is divisible by 3.”

We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Cases:

Inductive Hypothesis:

Inductive Step:

We conclude 𝑃 𝑥 ∀𝑥 ∈ S by the principle of induction.
Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Structural Induction

Let 𝑃(𝑥) be “𝑥 is divisible by 3.”

We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Cases:
6 = 2 ⋅ 3 so 3|6, and 𝑃(6) holds. 15 = 5 ⋅ 3, so3|15 and 𝑃(15) holds.

Inductive Hypothesis: Suppose 𝑃(𝑥) and 𝑃(𝑦) for arbitrary 𝑥, 𝑦 ∈ 𝑆.

Inductive Step:

This gives 𝑃(𝑥 + 𝑦).

We conclude 𝑃 𝑥 ∀𝑥 ∈ S by the principle of induction.
Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Structural Induction

Let 𝑃(𝑥) be “𝑥 is divisible by 3.”

We show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 by structural induction.

Base Cases:
6 = 2 ⋅ 3 so 3|6, and 𝑃(6) holds. 15 = 5 ⋅ 3, so3|15 and 𝑃(15) holds.

Inductive Hypothesis: Suppose 𝑃(𝑥) and 𝑃(𝑦) for arbitrary 𝑥, 𝑦 ∈ 𝑆.

Inductive Step: By IH 3 x and 3 y. So 𝑥 = 3𝑛 and 𝑦 = 3𝑚 for integers
𝑚, 𝑛.

Adding the equations, 𝑥 + 𝑦 = 3(𝑛 + 𝑚). Since 𝑛, 𝑚 are integers, we
have 3|(𝑥 + 𝑦) by definition of divides. This gives 𝑃(𝑥 + 𝑦).

We conclude 𝑃 𝑥 ∀𝑥 ∈ S by the principle of induction.

Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Structural Induction Template

1. Define 𝑃() State that you will show 𝑃(𝑥) holds for all 𝑥 ∈ 𝑆 and that
your proof is by structural induction.

2. Base Case: Show 𝑃(𝑏)
[Do that for every 𝑏 in the basis step of defining 𝑆]

3. Inductive Hypothesis: Suppose 𝑃(𝑥)
[Do that for every 𝑥 listed as already in 𝑆 in the recursive rules].

4. Inductive Step: Show 𝑃() holds for the “new elements.”
[You will need a separate step for every element created by the recursive rules].

5. Therefore 𝑃 𝑥 holds for all 𝑥 ∈ 𝑆 by the principle of induction.

Wait a minute! Why can we do this?

S

6 15

12 21 30

18 27

24…

Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

We proved:

Base Case: P(6) and P(15)

IH → IS: If P(x) and P(y), then P(x+y)

Weak Induction is a special case of Structural

ℕ

1 2

3 4 5

6 7

8…

Basis: 0 ∈ ℕ
Recursive: if 𝑘 ∈ ℕ then 𝑘 + 1 ∈ ℕ.

We proved:

Base Case: P(0)

IH → IS: If P(k), then P(k+1)

0

Wait a minute! Why can we do this?

Think of each element of 𝑆 as requiring 𝑘 “applications of a rule” to get
in

𝑃(𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠) is true

𝑃 𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠 → 𝑃(𝑜𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛) so 𝑃(𝑜𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

𝑃 𝑜𝑛𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 → 𝑃(𝑡𝑤𝑜 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠) so 𝑃(𝑡𝑤𝑜 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠)

…

It’s the same principle as regular induction. You’re just inducting on
“how many steps did we need to get this element?”

You’re still only assuming the IH about a domino you’ve knocked over.

Wait a minute! Why can we do this?

Imagine building 𝑆 “step-by-step”

𝑆0 = {6,15}

𝑆1 = 12,21,30

𝑆2 = {18,24,27,36,42,45,60}

IS can always of the form “suppose 𝑃 𝑥 ∀𝑥 ∈ (𝑆0 ∪ ⋯ ∪ 𝑆𝑘)” and show
𝑃(𝑦) for some 𝑦 ∈ 𝑆𝑘+1

We use the structural induction phrasing assuming our reader knows
how induction works and so don’t phrase it explicitly in this form.

Strings

Why these recursive definitions?

They’re the basis for regular expressions, which we’ll introduce next
week. Answer questions like “how do you search for anything that looks
like an email address”

First, we need to talk about strings.

Σ will be an alphabet the set of all the letters you can use in words.

Σ∗ is the set of all words all the strings you can build off of the letters.

Strings

𝜀 is “the empty string”

The string with 0 characters – “” in Java (not null!)

Σ∗:

Basis: 𝜀 ∈ Σ∗.

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ then 𝑤𝑎 ∈ Σ∗

𝑤𝑎 means the string of 𝑤 with the character 𝑎 appended.

You’ll also see 𝑤 ⋅ 𝑎 (a ⋅ to mean “concatenate” i.e. + in Java)

Functions on Strings
Since strings are defined recursively, most functions on strings are as well.

Length:

len(𝜀)=0;

len(𝑤𝑎)=len(𝑤)+1 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Reversal:

𝜀𝑅 = 𝜀;
𝑤𝑎 𝑅 = 𝑎𝑤𝑅 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Concatenation

𝑥 ⋅ 𝜀 = 𝑥 for all 𝑥 ∈ Σ∗;
𝑥 ⋅ 𝑤𝑎 = 𝑥 ⋅ 𝑤 𝑎 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Number of 𝑐’s in a string

#𝑐 𝜀 = 0
#𝑐 𝑤𝑐 = #𝑐 𝑤 + 1 for 𝑤 ∈ Σ∗;
#𝑐 𝑤𝑎 = #𝑐(𝑤) for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ ∖ {𝑐}.

Functions on Strings
Since strings are defined recursively, most functions on strings are as well.

Length:

len(𝜀)=0;

len(𝑤𝑎)=len(𝑤)+1 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Reversal:

𝜀𝑅 = 𝜀;
𝑤𝑎 𝑅 = 𝑎𝑤𝑅 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Concatenation

𝑥 ⋅ 𝜀 = 𝑥 for all 𝑥 ∈ Σ∗;
𝑥 ⋅ 𝑤𝑎 = 𝑥 ⋅ 𝑤 𝑎 for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ

Number of 𝑐’s in a string

#𝑐 𝜀 = 0
#𝑐 𝑤𝑐 = #𝑐 𝑤 + 1 for 𝑤 ∈ Σ∗;
#𝑐 𝑤𝑎 = #𝑐(𝑤) for 𝑤 ∈ Σ∗, 𝑎 ∈ Σ ∖ {𝑐}.

A string proof

You’ll do a string-based induction proof on the concept check. We’ll do
another one next week in lecture. It’s got a lot of details that are worth
going through slowly.

Let’s do a different set—trees!

Trees!

More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.

Recursive Step: If 𝑇1 and 𝑇2 are rooted binary trees with roots 𝑟1 and 𝑟2,
then a tree rooted at a new node, with children 𝑟1, 𝑟2 is a binary tree.

𝑇1 𝑇2

Functions on Binary Trees

size()=1

size() = size(𝑇1) + size(𝑇2) + 1

height() = 0

height() = 1+max(height(𝑇1),height(𝑇2))

𝑇1 𝑇2

𝑇1 𝑇2

Claim

We want to show that trees of a certain height can’t have too many
nodes. Specifically our claim is this:

For all trees 𝑇, size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1

Take a moment to absorb this formula, then we’ll do induction!

Structural Induction on Binary Trees

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary
trees 𝑇 by structural induction.

Base Case: Let 𝑇 = . size(𝑇)=1 and height(𝑇) = 0, so size(𝑇)=1≤ 2 −
1 = 20+1 − 1 = 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1.

Inductive Hypothesis: Suppose P(𝐿) and P 𝑅 hold for arbitrary trees
𝐿, 𝑅. Let 𝑇 be the tree

Inductive step: Figure out, (1) what we must show (2) a formula for
height and a formula for size of 𝑇.

𝐿 𝑅

Structural Induction on Binary Trees (cont.)

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by
structural induction.

𝑇 = .

height(𝑇)=1 + max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }

size(𝑇)= 1 +size(𝐿)+size(𝑅)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of
induction.

𝐿 𝑅

Structural Induction on Binary Trees (cont.)

Let 𝑃 𝑇 be “size(𝑇) ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1“. We show 𝑃(𝑇) for all binary trees 𝑇 by structural
induction.

𝑇 = .

height(𝑇)=1 + max{ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 , ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 }

size(𝑇)= 1 +size(𝐿)+size(𝑅)

size(𝑇)=1+size(𝐿)+size 𝑅 ≤ 1 + 2ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 +1 − 1 +2ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 +1 −1 (by IH)

 ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡 𝐿 +1 +2ℎ𝑒𝑖𝑔ℎ𝑡 𝑅 +1 −1 (cancel 1’s)

 ≤ 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) + 2ℎ𝑒𝑖𝑔ℎ𝑡(𝑇) − 1 = 2ℎ𝑒𝑖𝑔ℎ𝑡 𝑇 +1 − 1 (𝑇 taller than subtrees)

So 𝑃(𝑇) holds, and we have 𝑃(𝑇) for all binary trees 𝑇 by the principle of induction.

𝐿 𝑅

Structural Induction on Strings

Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case:

Inductive Hypothesis

Inductive Step:

We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction.
Unwrapping the definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as
required.

Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).

Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary string 𝑤.

Inductive Step:

We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction.
Unwrapping the definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as
required.

Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).

Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary string 𝑤.

Inductive Step: Let 𝑦 = 𝑤𝑎 for an arbitrary 𝑎 ∈ Σ. We show 𝑃 𝑦 . Let 𝑥 be an
arbitrary string.

…

Therefore, len(xy)=len(x) + len(y), as required.

We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction.
Unwrapping the definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as
required.

Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).

Let 𝑃(𝑦) be “len(x⋅y)=len(x) + len(y) for all 𝑥 ∈ Σ∗. “

We prove 𝑃(𝑦) for all 𝑥 ∈ Σ∗ by structural induction.

Base Case: Let 𝑥 be an arbitrary string, len(𝑥 ⋅ 𝜖)=len(x)
=len(x)+0=len(x)+len(𝜀)

Inductive Hypothesis: Suppose 𝑃(𝑤) for an arbitrary string 𝑤.

Inductive Step: Let 𝑦 = 𝑤𝑎 for an arbitrary 𝑎 ∈ Σ. We show 𝑃 𝑦 . Let 𝑥 be an arbitrary string.

len(xy)=len(xwa) =len(xw)+1 (by definition of len)

 =len(x) + len(w) + 1 (by IH)

 =len(x) + len(wa) (by definition of len)

Therefore, len(xy)=len(x) + len(y), as required.

We conclude that 𝑃(𝑦) holds for all string 𝑦 by the principle of induction. Unwrapping the
definition of 𝑃, we get ∀𝑥∀𝑦 ∈ Σ∗ len(xy)=len(x)+len(y), as required.

Claim for all 𝑥, 𝑦 ∈ Σ∗ len(x⋅y)=len(x) + len(y).

	Slide 1: Structural Induction
	Slide 2: Induction Big Picture
	Slide 3: Recursive Definition of Sets
	Slide 4: Recursive Definitions of Sets
	Slide 5: Recursive Definitions of Sets
	Slide 6: Recursive Definitions of Sets
	Slide 7: Structural Induction
	Slide 8: Structural Induction Example
	Slide 9: Structural Induction
	Slide 10: Structural Induction
	Slide 11: Structural Induction
	Slide 12: Structural Induction Template
	Slide 13: Wait a minute! Why can we do this?
	Slide 14: Weak Induction is a special case of Structural
	Slide 15: Wait a minute! Why can we do this?
	Slide 16: Wait a minute! Why can we do this?
	Slide 17: Strings
	Slide 18: Strings
	Slide 19: Functions on Strings
	Slide 20: Functions on Strings
	Slide 21: A string proof
	Slide 22: Trees!
	Slide 23: More Structural Sets
	Slide 24: Functions on Binary Trees
	Slide 26: Claim
	Slide 27: Structural Induction on Binary Trees
	Slide 28: Structural Induction on Binary Trees (cont.)
	Slide 29: Structural Induction on Binary Trees (cont.)
	Slide 30: Structural Induction on Strings
	Slide 31: Claim for all x ,y element of cap sigma to the asterisk operator len(xdoty)=len(x) + len(y).
	Slide 32: Claim for all x ,y element of cap sigma to the asterisk operator len(xdoty)=len(x) + len(y).
	Slide 33: Claim for all x ,y element of cap sigma to the asterisk operator len(xdoty)=len(x) + len(y).
	Slide 34: Claim for all x ,y element of cap sigma to the asterisk operator len(xdoty)=len(x) + len(y).

