”' :
h?% " CSE 311 Autumn 2024
| /_l___l’] du Cw Lecture 15

How do we know recursion works? /\

//Assumeqé_is a nonnegative integer Lji\ (Z
I /

//returns 27i.
public int Ca%culatesTonoTheI(int 1) {

if (i_==_0) % | ,\)\

return 1;

~
else L }
———— . % Q
return 2*Cag;8lgESSTonoTheI(1—1); —~

} S oo ——— D

Why does CalculatesTwoToTheI (4) calculate 2747 “\5 (F\\
Convince the people around youl — W

How do we know recursion works?

Something like this:

Well, as long as CalculatesTwoToTheI (3) = 8, we get 16...

Which happens as long as CalculatesTwoToTheTI (2)
Which happens as ong as CalculatesTwoToTheTI (1)

Which happens as long as CalculatesTwoToTheI (0)

And it is! Because that’s what the base case says.
/ ﬁ

How do we know recursion works?

There's really only two cases.
The Base Case is Correct
CalculatesTwoToTheI (0) = 1 (which 1t should!)
And that means CalculatesTwoToTheI (1) = 2, (like it should)
And that means CalculatesTwoToTheI (2) = 4, (like it should)
And that means CalculatesTwoToTheI (3) = 8, (like it should)
{

And that means CalculatesTwoToTheI (4) = 16, (like it should)

IF the recursive call we make is correct
THEN our value is correct.

How do we know recursion works?

The code has two big cases,
So our proof had two big cases

ﬁhe base case of the code produces the correct output”

“IF the calls we rely on produce the correct output THEN the current call
produces the right output”

A bit more formally...

“The base case of the code produces the correct output”

“IF the calls we rely on produce the correct output THEN the current call
oroduces the right output”

et P(i) be "CalculatesTwoToTheI (i) returns AN
T —

How do we know_P(4)?

, P(O) |s true.

AnctT(O) - P(1),s0 H(l)

Anc T’(f—> 1) - P(2), s0 P(Z)

And P(Z) - P(3) SO P(3)
And P(3) = P(4), (4), s0 P(4).

‘_\\

e —

A bit more formally...

This works alright for P(4).

What about P(1000)? P(1000000000)?

At this point, we'd need to show that implication P(k) - P(k + 1) for A
BUNCH of values of k.

But the code is the same each time.

And so was the argument!

We should instead show Vk[P(k) - P(k + 1)].

Induction

Your new favorite proof technique!
How do we show Vvn, P(n)?

Show P(0) j

S PG+1) |

//Assume 1 is a nonnegative integer
public int CalculatesTonoTheI(lnt 1){

IndUCtion if(1 == 0)

-

return 1;

else
return 2*CaclulatesTwoToThelI (
) \
Let P(n) be “CalculatesTwoToThel (n) returns 2™ @(Q
D —_—

@_ . . ‘“\\/.\/
Note that if the input n is 0, then the if-statement evaluates to true, and
1 =270 is returned, so P(0) is true.
Suppose P (k) holds for an arbitrary k > 0.

Consider the coderunon k 4+ 1.Sincek >0,k + 1 > 1 and we are in the else
branch. By inductive hypothesis, CalculatesTwoToThel (k) returns 2%, so the

code runon k + 1 returns 2 - 2k = 2k+1,

So P(k + 1) holds.
Therefore P(n) holds for all n = 0 by the principle of induction.

Making Induction Proofs Pretty

Let P(n) be the predicate “CalculatesTwoToTheI (n) returns 2™." We
prove P(n) holds holds for all natural numbers n by induction on n.

Base Case (n = 0) Note that if the input n is O, then the if-statement
evaluates to true, and 1 = 220 is returned, so P(0) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = 0.

inductive Step: Since k = 0,k + 1 > 1, so the code goes to the recursive
case. We will return 2 - CalculatesTwoToTheT (k). By Inductive
Hypothesis,

CalculatesTwoToThelI (k)= 2% Thus we return 2 - 2k = 2k+1

So P(k + 1) holds.
Therefore P(n) holds for all n = 0 by the principle of induction.

Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!
1. Define P(n). State that your proof is by induction on n.
2. Show P(0) i.e. show the base case

3. Suppose P (k) for an arbitrary k.

4. Show P(k+ 1) (i.e.get P(k) - P(k + 1))

5. Conclude by saying P(n) is true for all n by induction.

Some Other Notes

Always state where you use the inductive hypothesis when you're using
it in the inductive step.

It's usually the key step, and the reader really needs to focus on it.

Be careful about what values you're assuming the Inductive Hypothesis

for — the smallest possible value of k should assume the base case but
nothing more.

The Principle of Induction (formally)

[Principle of] If you know: P(0); Vk(P(k) - P(k + 1))

Induction You can conclude: vn(P(n))

Informally: if you knock over one domino, and every domino knocks
over the next one, then all your dominoes fell over.

More Induction

Induction doesn’t only work for code!
Show that Y 2t =142+ 4+ -+ 20 =2"t1 — 1,

More Induction

Induction d 't only work for code!
Showth@ 14+2 444427 @
Let P(n) ="y 2t = 2"t — 17
e —. s . .
We show P(n) holds for all natural numbers n by induction on n.
Base Case (/)

Inductive Hypothesks
Inductive Step: <

g Z\ D\ a 9%\ E s -

O 1) > Lot = — |

P(n) holds for all n = 0 by the(ﬁ%mple 0

Induction. — — =

More Induction

Induction doesn’t only work for code!

Show that ¥ 2! =1+ 2+ 4+ -+ 2" =271 — 1,

Let P(n) ="y 2t =21 — 1"

We show P(n) holds for all natural numbers n by induction on n.
Base Case (n = 0) Y} ,2!=1=2—-1=20+1 -1

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = 0.
Inductive Step: We show P(k + 1). Consider the summation).¥*1 2t =
2k+1 4wk 2t = 2k+1 4 2k+1 _ 1 where the last step is by IH.

Simplifying, we get: Y it 12t = 2k+1 4 pk+1 1 = 2. 2k+1 _ 1 =
2(k+1)+1 —1.

P(n) holds for all n = 0 by the principle of induction.

Algebra Block Formatting

In an English proof it's very common to have algebra broken out
(instead of separate sentences); this is often easier to read.

Inductive Step: We show P(k + 1). Consider the summation
Yhtlolt = pk+1 4 y& 20 breaking off final term

= 2k+1 4 2k+1 — 1 by IH

= 2 - 2F*1 — 1 combining two copies of 2k*1

— 2(k+1)+1 1.

P(n) holds for all n = 0 by the principle of induction.

	Slide 1: Induction
	Slide 2: How do we know recursion works?
	Slide 3: How do we know recursion works?
	Slide 4: How do we know recursion works?
	Slide 5: How do we know recursion works?
	Slide 6: A bit more formally…
	Slide 7: A bit more formally…
	Slide 8: Induction
	Slide 9: Induction
	Slide 10: Making Induction Proofs Pretty
	Slide 11: Making Induction Proofs Pretty
	Slide 12: Some Other Notes
	Slide 13: The Principle of Induction (formally)
	Slide 14: More induction!
	Slide 15: More Induction
	Slide 16: More Induction
	Slide 17: More Induction
	Slide 18: Algebra Block Formatting

