
Sets CSE 311 Autumn 24

Lecture 14



We’ve got A LOT of definitions today

You don’t need me to read things aloud to you.

We’ll cover the subtle/tricky things in lecture.
Other things are left for you to read on your own. The section is marked in the slide 
deck.

Today’s concept check should be very useful to get the definitions 
down! 



Sets 

A set is an unordered group of distinct elements.

We’ll always write a set as a list of its elements inside {curly, brackets}.

Variable names are capital letters, with lower-case letters for elements.

𝐴 = {curly, brackets}

𝐵 = 0,5,8,10 = 5,0,8,10 = {0,0,5,8,10}

𝐶 = 0,1,2,3,4, …

𝐴 = 2. “The size of 𝐴 is 2.” or “𝐴 has cardinality 2.”



Sets

Some more symbols:

𝑎 ∈ 𝐴 (“𝑎 is in 𝐴" or “𝑎 is an element of 𝐴") means 𝑎 is one of the 
members of the set.

For 𝐵 = 0,5,8,10 ,  0 ∈ 𝐵.

𝐴 ⊆ 𝐵 (𝐴 is a subset of 𝐵) means every element of 𝐴 is also in 𝐵.

For 𝐴 = 1,2 , 𝐵 = {1,2,3} 𝐴 ⊆ 𝐵



Sets

Be careful about these two operations:

If 𝐴 = {1,2,3,4,5}

1 ⊆ 𝐴, but 1 ∉ 𝐴

∈ asks: is this item in that box?

⊆ asks: is everything in this box also in that box?



Try it!

Let 𝐴 = 1,2,3,4,5

𝐵 = {1,2,5}

Is 𝐴 ⊆ 𝐴?

Is 𝐵 ⊆ 𝐴?

Is 𝐴 ⊆ 𝐵?

Is 1 ∈ 𝐴?

Is 1 ∈ 𝐴?



Try it!

Let 𝐴 = 1,2,3,4,5

𝐵 = {1,2,5}

Is 𝐴 ⊆ 𝐴?

Is 𝐵 ⊆ 𝐴?

Is 𝐴 ⊆ 𝐵?

Is 1 ∈ 𝐴?

Is 1 ∈ 𝐴?

Yes!

Yes

No 

No

Yes



Definitions

𝐴 ⊆ 𝐵 ("𝐴 is a subset of 𝐵") iff every element of 𝐴 is also in 𝐵.

𝐴 = 𝐵 ("𝐴 equals 𝐵") iff 𝐴 and 𝐵 have identical elements.

𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) 

𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴



Proof Skeleton

How would we show 𝐴 ⊆ 𝐵?

Let 𝑥 be an arbitrary element of 𝐴

…

So 𝑥 is also in 𝐵.

Since 𝑥 was an arbitrary element of 𝐴, we have that 𝐴 ⊆ 𝐵.

𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) 



Proof Skeleton

That wasn’t a “new” skeleton! It’s exactly what we always do when we 
want to prove ∀𝑥(𝑃 𝑥 → 𝑄 𝑥 ) !

What about 𝐴 = 𝐵?

Just do two subset proofs! 

i.e. ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) and ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)

𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴



What do we do with sets?

We combined propositions with ∨,∧, ¬.

We combine sets with ∩ intersection ,∪, [union] ¯[complement]

𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

𝐴 ∩ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

ҧ𝐴 = {𝑥: 𝑥 ∉ 𝐴} That’s a lot of elements…if we take the complement, we’ll have 

some “universe” 𝒰, and ҧ𝐴 = {𝑥: 𝑥 ∈ 𝑈 ∧ 𝑥 ∉ 𝐴}
It’s a lot like the domain of discourse.



𝐴 𝐵 𝐴 𝐵

𝐴 ∪ 𝐵 𝐴 ∩ 𝐵

𝐴

ҧ𝐴



Proofs with sets



A proof!

What’s the analogue of DeMorgan’s Laws…

ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵 𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵 

 

𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵 



𝐴
𝐵

ҧ𝐴

ത𝐵

𝐴 𝐵

ҧ𝐴 ∩ ത𝐵

𝐴 𝐵

Try to find the 

diagram for 𝐴 ∪ 𝐵

Is it the same?



𝐴
𝐵

ҧ𝐴

ത𝐵

𝐴 𝐵

ҧ𝐴 ∩ ത𝐵

𝐴 𝐵

𝐴 ∪ 𝐵

𝐴 𝐵

𝐴 𝐵

𝐴 ∪ 𝐵



A proof!

What’s the analogue of DeMorgan’s Laws…

ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵 𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴

ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵 

Let 𝑥 be an arbitrary element of ҧ𝐴 ∩ ത𝐵. 

…

That is, 𝑥 is in the complement of 𝐴 ∪ 𝐵, as required.

Since 𝑥 was arbitrary ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵 

𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵 

Let 𝑥 be an arbitrary element of 𝐴 ∪ 𝐵.

…

we get 𝑥 ∈ ҧ𝐴 ∩ ത𝐵
Since 𝑥 was arbitrary 𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵 

Since the subset relation holds in both directions, we have ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵



A proof!
What’s the analogue of DeMorgan’s Laws…

ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵 𝐴 = 𝐵 ≡ ∀𝑥 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴
ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵 

Let 𝑥 be an arbitrary element of ҧ𝐴 ∩ ത𝐵. 

By definition of ∩ 𝑥 ∈ ҧ𝐴 and 𝑥 ∈ ത𝐵. By definition of complement, 𝑥 ∉ 𝐴 ∧ 𝑥 ∉ 𝐵.

Applying DeMorgan’s Law, we get ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).

Applying the definition of union, we get:¬(𝑥 ∈ 𝐴 ∪ 𝐵). 
From the definition of complement, we get x ∈ 𝐴 ∪ 𝐵, as required.

Since 𝑥 was arbitrary ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵 

𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵 

Let 𝑥 be an arbitrary element of 𝐴 ∪ 𝐵.

By definition of complement, 𝑥 is not an element of 𝐴 ∪ 𝐵. Applying the definition of union, we get, ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)
Applying DeMorgan’s Law, we get: 𝑥 ∉ 𝐴 ∧ 𝑥 ∉ 𝐵
By definition of complement, 𝑥 ∈ ҧ𝐴 ∧ 𝑥 ∈ ത𝐵. So by definition of intersection, we get 𝑥 ∈ ҧ𝐴 ∩ ത𝐵
Since 𝑥 was arbitrary 𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵 

Since the subset relation holds in both directions, we have ҧ𝐴 ∩ ത𝐵 = 𝐴 ∪ 𝐵



Proof-writing advice

When you’re writing a set equality proof, often the two directions are 
nearly identical, just reversed.

It’s very tempting to use that 𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 definition.

Be VERY VERY careful. It’s easy to mess that up, at every step you need 
to be saying “if and only if.”



Summary: How to show an if and only if

To show 𝑝 𝑞 you have two options:

Option A (STRONGLY recommended)

(1) 𝑝 → 𝑞

(2) 𝑞 → 𝑝

Option B (discouraged, but allowed)

𝑝 if-and-only-if 𝑝′ if-and-only-if 𝑝′′ if-and-only-if … if-and-only-if 𝑞

EVERY step must be an if-and-only if (in your justification AND explicitly 
written).



Two More Set Operations

Set-Builder Notation

Build your own set!

{𝑥 ∶ Conditions 𝑥 }

“The set of all 𝑥 such that Conditions(𝑥)”

Everything that meets the conditions (causes the expression after the : 
to be true) is in the set. Nothing else is.

{𝑥:Even(𝑥)} = {… , −4, −2,0,2,4, … }

{𝑦:Prime(𝑦)∧ Even(𝑦)} = {2}

In general

{ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∶ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 }
Will also see | instead of :



Two More Set Operations

Given a set, let’s talk about it’s powerset. 

𝒫 𝐴 = {X: X is a subset of 𝐴}

The powerset of 𝐴 is the set of all subsets of 𝐴.

𝒫 1,2 = {∅, 1 , 2 , 1,2 }



Recursive Set Definitions



Recursive Definition of Sets

Define a set 𝑆 as follows:

Basis Step: 0 ∈ 𝑆

Recursive Step: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.

Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a 
finite number of recursive steps starting from a basis step.

What is 𝑆?



Recursive Definitions of Sets

We’ll always list the Basis and Recursive parts of the definition.

Starting…now…we’re going to be lazy and skip writing the “exclusion” 
rule. It’s still part of the definition.



Recursive Definitions of Sets

All Natural Numbers

Basis Step: 0 ∈ 𝑆

Recursive Step: If 𝑥 ∈ 𝑆 then 𝑥 + 1 ∈ 𝑆.

All Integers

Basis Step: 0 ∈ 𝑆

Recursive Step: If 𝑥 ∈ 𝑆 then 𝑥 + 1 ∈ 𝑆 and 𝑥 − 1 ∈ 𝑆.

Integer coordinates in the line 𝑦 = 𝑥

Basis Step: (0,0) ∈ 𝑆

Recursive Step: If (𝑥, 𝑦) ∈ 𝑆 then (𝑥 + 1, 𝑦 + 1) ∈ 𝑆 and (𝑥 − 1, 𝑦 − 1) ∈ 𝑆.



Recursive Definitions of Sets

Q1: What is this set?

Basis Step: 6 ∈ 𝑆, 15 ∈ 𝑆

Recursive Step: If 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆

Q2: Write a recursive definition for the set of powers of 3 {1,3,9,27, … }

Basis Step:

Recursive Step:



Extra Set Practice



Extra Set Practice

Show 𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)

Proof:

Start with the outline. What two things do we need to show? For each, 

where do we start and end?



Extra Set Practice

Show 𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)
Proof:
First, we’ll show: 𝐴 ∪ 𝐵 ∩ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶) 

Let 𝑥 be an arbitrary element of𝐴 ∪ 𝐵 ∩ 𝐶 .
…

 𝑥 ∈ 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 . So 𝐴 ∪ 𝐵 ∩ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶).

 Now we show 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ 𝐶
 Let 𝑥 be an arbitrary element of 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 .
…
 𝑥 ∈ 𝐴 ∪ 𝐵 ∩ 𝐶 . So 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ 𝐶 . 

 

Combining the two directions, since both sets are subsets of each other, we have: 
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)



Extra Set Practice

Show 𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)

Proof:

First, we’ll show: 𝐴 ∪ 𝐵 ∩ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶) 

Let 𝑥 be an arbitrary element of𝐴 ∪ 𝐵 ∩ 𝐶 .

Then by definition of ∪,∩ we have:

𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)

Applying the distributive law, we get

𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) 

Applying the definition of union, we have:

𝑥 ∈ (𝐴 ∪ 𝐵) and 𝑥 ∈ (𝐴 ∪ 𝐶)

By definition of intersection we have 𝑥 ∈ 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶).

So 𝐴 ∪ 𝐵 ∩ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶).

Now we show 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ 𝐶

Let 𝑥 be an arbitrary element of 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 .

By definition of intersection and union, 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)

Applying the distributive law, we have 𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)

Applying the definitions of union and intersection, we have 𝑥 ∈ 𝐴 ∪ (𝐵 ∩ 𝐶)

So 𝐴 ∪ 𝐵 ∩ 𝐴 ∪ 𝐶 ⊆ 𝐴 ∪ 𝐵 ∩ 𝐶 .

Combining the two directions, since both sets are subsets of each other, we have 𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)



Extra Set Practice

Suppose 𝐴 ⊆ 𝐵. Show that 𝒫 𝐴 ⊆ 𝒫(𝐵).



Extra Set Practice

Suppose 𝐴 ⊆ 𝐵. Show that 𝒫 𝐴 ⊆ 𝒫(𝐵).

Let 𝐴, B be arbitrary sets such that 𝐴 ⊆ 𝐵.

Let 𝑋 be an arbitrary element of 𝒫 𝐴 .

Thus 𝑋 ∈ 𝒫(𝐵) by definition of powerset. 

Since an arbitrary element of 𝒫 𝐴  is also in 𝒫(𝐵), we have 𝒫 𝐴 ⊆
𝒫(𝐵).



Extra Set Practice

Suppose 𝐴 ⊆ 𝐵. Show that 𝒫 𝐴 ⊆ 𝒫(𝐵).

Let 𝐴, B be arbitrary sets such that 𝐴 ⊆ 𝐵.

Let 𝑋 be an arbitrary element of 𝒫 𝐴 .

By definition of powerset, 𝑋 ⊆ 𝐴.

Since 𝑋 ⊆ 𝐴, every element of 𝑋 is also in 𝐴. And since 𝐴 ⊆ 𝐵, we also 
have that every element of 𝑋 is also in 𝐵.

Thus 𝑋 ∈ 𝒫(𝐵) by definition of powerset. 

Since an arbitrary element of 𝒫 𝐴  is also in 𝒫(𝐵), we have 𝒫 𝐴 ⊆
𝒫(𝐵).



Extra Set Practice

Disprove: If 𝐴 ⊆ 𝐵 ∪ 𝐶  then 𝐴 ⊆ 𝐵 or 𝐴 ⊆ 𝐶



Extra Set Practice

Disprove: If 𝐴 ⊆ 𝐵 ∪ 𝐶  then 𝐴 ⊆ 𝐵 or 𝐴 ⊆ 𝐶

Consider 𝐴 = 1,2,3 , 𝐵 = 1,2 , 𝐶 = 3,4 .

𝐵 ∪ 𝐶 = {1,2,3,4} so we do have 𝐴 ⊆ (𝐵 ∪ 𝐶), but 𝐴 ⊈ 𝐵 and 𝐴 ⊈ 𝐶.

When you disprove a ∀, you’re just providing a counterexample (you’re 
showing ∃) – your proof won’t have “let 𝑥 be an arbitrary element of 𝐴.”



Read on Your Own



Some old friends (and some new ones)

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}

ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}

ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48

ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a positive integer

{} =  is the empty set; the only set with no elements



Some old friends (and some new ones)

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}

ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}

ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48

ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a positive integer

{} =  is the empty set; the only set with no elements

Our natural numbers start at 0. 

Common in CS, other resources start at 1.

In LaTeX \mathbb{R}

In Office \doubleR

Use this symbol not {}.

In LaTex \varnothing In Office \emptyset.



More Connectors!

𝐴 ∖ 𝐵  “A minus B”

𝐴 ⊕ 𝐵 “XOR” (also called “symmetric difference”)

  

𝐴 ∖ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}

𝐴 ⊕ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ⊕ 𝑥 ∈ 𝐵}



More Connectors!

𝐴 × 𝐵 = 𝑎, 𝑏 : 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵

Called “the Cartesian product” of 𝐴 and 𝐵. 

ℝ × ℝ is the “real plane” ordered pairs of real numbers. 

1,2 × 1,2,3 = { 1,1 , 1,2 , 1,3 , 2,1 , 2,2 , 2,3 }
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