
Wrap-up Number
Theory

CSE 311 Autumn 2024

Lecture 13

Today

A few last thoughts from Monday
How does RSA work, though?

What’s the difference?

What’s the difference between proof by contrapositive and proof by
contradiction?

Show 𝒑 → 𝒒 Proof by contradiction Proof by contrapositive

Starting Point ¬ 𝑝 → 𝑞 ≡ (𝑝 ∧ ¬𝑞) ¬𝑞

Target Something false ¬𝑝

Show 𝒑 Proof by contradiction Proof by contrapositive

Starting Point ¬𝑝 ---

Target Something false ---

When do we use proof by contradiction

In general…

- proofs by contradiction are harder to read and write, so they tend to
be a second or third attempt.

- they are more flexible, and can prove a wide variety of statements.

So don’t reach for it first, but also don’t reach for it never!

Extra Practice

Just the Skeleton

“For all integers 𝑥, if 𝑥2 is even, then 𝑥 is even.”

Just the Skeleton

“For all integers 𝑥, if 𝑥2 is even, then 𝑥 is even.”

Suppose for the sake of contradiction, there is an integer 𝑥, such that 𝑥2

is even and 𝑥 is odd.

…

[] is a contradiction, so for all integers 𝑥, if 𝑥2 is even, then 𝑥 is even.

Just the Skeleton

“There is not an integer 𝑘 such that for all integers 𝑛, 𝑘 ≥ 𝑛.

Just the Skeleton

“There is not an integer 𝑘 such that for all integers 𝑛, 𝑘 ≥ 𝑛.

Suppose, for the sake of contradiction, that there is an integer 𝑘 such
that for all integers 𝑛, 𝑘 ≥ 𝑛.

…

[] is a contradiction! So there is not an integer 𝑘 such that for all
integers 𝑛, 𝑘 ≥ 𝑛.

Small Techniques

Proof By Cases

If 𝑥 is prime then 𝑥2 is odd or 2|𝑥.

We need two different arguments – one for 2 and one for all the other
primes…

Proof By Cases

Let 𝑥 be an arbitrary prime number

We divide into two cases.

Case 1: 𝑥 is even
If 𝑥 is even then 𝑥 = 2𝑘 for some integer 𝑘, this is the definitions of 2|𝑥.

Case 2: 𝑥 is odd

If 𝑥 is odd, then 𝑥 = 2𝑗 + 1 for some integer 𝑗. Squaring, we get
𝑥2 = 4𝑗2 + 4𝑗 + 1 = 2 2𝑗2 + 2𝑗 + 1.

Since 𝑗 is an integer 2𝑗2 + 2𝑗 is as well, so 𝑥2 is odd by definition.

In either case, 𝑥 met the condition of 2|𝑥 or 𝑥2 is odd, so the claim is
true.

Proof By Cases

Make it clear how you decide which case your in.

It should be obvious your cases are “exhaustive”

Reach the same conclusion in each of the cases, and you can say you’ve
got that conclusion no matter what (outside the cases).

Advanced version: sometimes you end up arguing a certain case “can’t
happen”

Exists proofs

Suppose I claim that for all integers, if 𝑥 is even then 8|𝑥2.

That…doesn’t look right.

How do you prove me wrong?

Want to show: ∃𝑥 𝐸𝑣𝑒𝑛 𝑥 ∧ ¬ 8 𝑥^2

Consider 𝑥 = 6. Then 𝑥 is even (since 6 = 3 ⋅ 2), but 8 does not divide
36 (as 36%8 = 4).

Proof By [Counter]Example

To prove an existential statement (or disprove a universal statement),
provide an example, and demonstrate that it is the needed example.

You don’t have to explain where it came from! (In fact, you shouldn’t)

Computer scientists and mathematicians like to keep an air of mystery
around our proofs.
(or more charitably, we want to focus on just enough to believe the claim)

Skeleton of an Exists Proof

To show ∃𝑥(𝑃 𝑥)

Consider 𝑥 =[the value that will work]

[Show that 𝑥 does cause 𝑃(𝑥) to be true.]

So [value] is the desired 𝑥.

You’ll probably need some “scratch work” to determine what to set 𝑥 to.
That might not end up in the final proof!

More Mod proofs

More proofs

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Step 1: What do the words mean?

Step 2: What does the statement as a whole say?

Step 3: Where do we start?

Step 4: What’s our target?

Step 5: Now prove it.

Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 be integers, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 be integers, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 be integers, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛𝑘𝑛𝑗 = (𝑑 − 𝑐)(𝑏 − 𝑎) by multiplying the two equations

𝑛𝑘𝑛𝑗 = (𝑏𝑑 − 𝑏𝑐 − 𝑎𝑑 + 𝑎𝑐)

…

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 be integers, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛𝑘𝑛𝑗 = (𝑑 − 𝑐)(𝑏 − 𝑎) by multiplying the two equations

𝑛𝑘𝑛𝑗 = (𝑏𝑑 − 𝑏𝑐 − 𝑎𝑑 + 𝑎𝑐)

And then a miracle occurs

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Uh-Oh

We hit (what looks like) a dead end.

But how did I know we hit a dead end? Because I knew exactly where
we needed to go. If you didn’t, you’d have been staring at that for ages
trying to figure out the magic step.

(or worse, assumed you lost a minus sign somewhere, and just “fixed”
it….)

Let’s try again. This time, let’s separate 𝑏 from 𝑎 and 𝑑 from 𝑐 before
combining.

Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 be integers, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 be integers, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐 ,

𝑏𝑑 = 𝑛𝑘 + 𝑎 𝑛𝑗 + 𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 + 𝑎𝑐

𝑏𝑑 − 𝑎𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 = 𝑛(𝑛𝑘𝑗 + 𝑎𝑗 + 𝑐𝑘)

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 be integers, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

Isolating,𝑏 and 𝑑, we have: 𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐

Multiplying the equations, and factoring, 𝑏𝑑 = 𝑛𝑘 + 𝑎 𝑛𝑗 + 𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 + 𝑎𝑐

Rearranging, and facoring out n: 𝑏𝑑 − 𝑎𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 = 𝑛(𝑛𝑘𝑗 + 𝑎𝑗 + 𝑐𝑘)

Since all of 𝑛, 𝑗, 𝑘, 𝑎, and 𝑐 are integers, we have that 𝑏𝑑 − 𝑎𝑐 is 𝑛 times an integer, so

𝑛|(𝑏𝑑 − 𝑎𝑐), and by definition of mod

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Number Theory Wrap-up

Plan For Number Theory Wrap up

We don’t expect you to fully absorb the content in this section of the
slides.

Our goals are:

1. See some definitions (these we do expect you to understand!)

2. Introduce an algorithm (that you’ll practice in section tomorrow)

3. See that number theory results can make code faster in unexpected
ways.

4. See a bit of code analysis (a preview of 332).

5. Hopefully say “oh neat, I understand a little bit about how secure
online communication works”

GCD and LCM

The Greatest Common Divisor of 𝑎 and 𝒃 (gcd(a,b)) is the

largest integer 𝒄 such that 𝒄|𝒂 and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃 (lcm(a,b)) is the

smallest positive integer 𝒄 such that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple

Try a few values…

gcd(100,125)

gcd(17,49)

gcd(17,34)

gcd(13,0)

lcm(7,11)

lcm(6,10)

How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(23 ⋅ 3, 22 ⋅ 5) = 2^{min(2,3)} = 2^2 = 4.

(lcm has a similar algorithm – take the maximum number of copies of
everything)

But that’s….really expensive. Mystery finds gcd.

public int Mystery(int m, int n){

 if(m<n){

 int temp = m;

 m=n;

 n=temp;

 }

 while(n != 0) {

 int rem = m % n;

 m=n;

 n=rem;

 }

 return m;

}

GCD facts

1. gcd(a,0)=a

Pf: 𝑎 is a common divisor (𝑎 = 1 ⋅ 𝑎; 0 = 0 ⋅ 𝑎); larger numbers don’t
divide 𝑎 (for positive numbers, if 𝑥|𝑦 then 𝑥 ≤ 𝑦)

2. If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

Why is 2 true? The proof isn’t easy, it’s at the end of this deck.

Why should you care?

So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 3 𝑚𝑜𝑑 𝑛

Just multiply both sides by
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

What number can we pick?

The next two slides are going to get more abstract…we’re listing out the
facts we need to solve that equation.

Remember everything we’re

learning contributes to us

eventually understanding RSA.

This is a key step in generating keys.

Bézout’s Theorem

We’re not going to prove this theorem…

But it turns out Mystery can be extended to find them.

We’ll discuss that in the optional video.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔

and 𝒕 such that

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem

So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 3 𝑚𝑜𝑑 𝑛

Just multiply both sides by
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) = 1

Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .

So the 𝑠 from Bézout’s Theorem is what we should multiply by!

Ok…how am I supposed to find 𝑠, 𝑡?

It turns out that while you’re calculating the gcd (using the Mystery
algorithm), you can keep some extra information recorded, and end up
with the 𝑠, 𝑡

This is called the “extended Euclidian algorithm”

Examples in these slides.

Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find?

The multiplicative inverse of 7(mod 26)

Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

 = gcd(5, 7%5) = gcd(5,2)

 = gcd(2, 5%2) = gcd(2, 1)

 = gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ; 2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ; 1 = 5 − 2 ⋅ 2

Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

 = gcd(5, 7%5) = gcd(5,2)

 = gcd(2, 5%2) = gcd(2, 1)

 = gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ; 2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ; 1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
 = 5 − 2(7 − 5 ⋅ 1)

 = 3 ⋅ 5 − 2 ⋅ 7
 = 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7

 = 3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse of 7 for

(mod 26) arithmetic!

We’ll write that as 15, since we’re

working mod 26.

Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find?

The multiplicative inverse of 7 (𝑚𝑜𝑑 26). We found it’s 15.

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)

𝑦 ≡ 45(𝑚𝑜𝑑 26)

Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)

So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ

Solutions: {… , −7,19,45, … 19 + 26𝑘, … } i.e. {𝑥: 𝑥 = 19 + 26𝑘 for some 𝑘 ∈ ℤ}

RSA Encryption

Key Steps in RSA

Given two numbers, we can find their gcd quickly.

If we have an equation

𝑎𝑥 ≡ 𝑏(mod 𝑛)

And gcd 𝑎, 𝑛 = 1 then we can quickly find a number to multiply the
equation by to solve for 𝑥.

Framing Device

We’re going to give you enough background to (mostly) understand the
RSA encryption system.

Framing Device

We’re going to give you enough background to (mostly) understand the
RSA encryption system.

Prime Numbers

Modular Arithmetic

Modular Multiplicative Inverse

Bezout’s Theorem

Extended Euclidian Algorithm

Framing Device

We’re going to give you enough background to (mostly) understand the
RSA encryption system.

Framing Device

We’re going to give you enough background to (mostly) understand the
RSA encryption system.

Modular Exponentiation

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎

How big are those numbers?

1230186684530117755130494958384962720772853569595334792197322

4521517264005072636575187452021997864693899564749427740638459

2519255732630345373154826850791702612214291346167042921431160

2221240479274737794080665351419597459856902143413

3347807169895689878604416984821269081770479498371376856891243

1388982883793878002287614711652531743087737814467999489

3674604366679959042824463379962795263227915816434308764267603

2283815739666511279233373417143396810270092798736308917

How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on a future
homework. It’s a nice combination of lots of things we’ve done with
modular arithmetic.

Let’s talk about finding 𝐶 = 𝑎𝑒%𝑛.

𝑒 is a BIG number (about 216 is a common choice)

int total = 1;

for(int i = 0; i < e; i++){

 total = (a * total) % n;

}

Fast Exponentiation Algorithm

Let’s build a faster algorithm.

Fast exponentiation – simple case. What if 𝑒 is exactly 216?

int total = 1;

for(int i = 0; i < e; i++){

 total = a * total % n;

}

Instead:

int total = a;

for(int i = 0; i < log(e); i++){

 total = total^2 % n;

}

Fast Exponentiation Algorithm

What if 𝑒 isn’t exactly a power of 2?

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of
𝑒 had a 1.

Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝒆 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of
𝑒 had a 1.

Start with largest power of 2 less than 𝑒 (8). 8’s place gets a 1. Subtract power

Go to next lower power of 2, if remainder of 𝑒 is larger, place gets a 1, subtract
power; else place gets a 0 (leave remainder alone).

11 = 10112

Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝒂𝒄%𝒏 for 𝒄 every power of 𝟐 up to 𝒆.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 𝑒
had a 1.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6

Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝒂𝒆 by multiplying 𝒂𝒄 for all 𝒄 where binary expansion of 𝒆
had a 𝟏.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6

411%10 = 48+2+1%10 =
[(48%10) ⋅ 42%10 ⋅ 4%10]%10 = (6 ⋅ 6 ⋅ 4)%10
= 36%10 ⋅ 4 %10 = 6 ⋅ 4 %10 = 24%10 = 4.

Fast Exponentiation Algorithm

Is it…actually fast?

The number of multiplications is between log2 𝑒 and 2 log2 𝑒.

That’s A LOT smaller than 𝑒

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 25 in binary:

16 is the largest power of 2 smaller than 25. 25 − 16 = 9 remaining

8 is smaller than 9. 9 − 8 = 1 remaining.

4s place gets a 0.

2s place gets a 0

1𝑠 place gets a 1

110012

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 32𝑖
%7:

31%7 = 3

32%7 = 9%7 = 2

34%7 = (32 ⋅ 32)%7 = (2 ⋅ 2)%7 = 4

38%7 = 34 ⋅ 34 %7 = 4 ⋅ 4 %7 = 2

316%7 = 38 ⋅ 38 %7 = 2 ⋅ 2 %7 = 4

One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

31%7 = 3

32%7 = 2

34%7 = 4

38%7 = 2

316%7 = 4

325%7 = 316+8+1%7

= [(316%7) ⋅ 38%7 ⋅ (31%7)]%7

= 4 ⋅ 2 ⋅ 3 %7

= 1 ⋅ 3 %7 = 3

A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number “secret”?

Raising numbers to large exponents (in mod arithmetic) and finding
multiplicative inverses in modular arithmetic are things computers can
do quickly.

But factoring numbers (to find 𝑝, 𝑞 to get 𝑑) or finding an “exponential
inverse” (not the real term) directly are not things computers can do
quickly. At least as far as we know.

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎

Why does the Euclidian
Algorithm Work?

Correctness of an algorithm

The key to the Euclidian Algorithm being correct is that each time
through the loop, you don’t change the gcd of the variables m,n.

To prove the code correct, you really want an induction proof (it’s good
practice to think about it!). The inductive step relies on the fact we
stated but didn’t prove:

gcd(a,b) = gcd(b, a%b).

Let’s prove it!

GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?

Call 𝑎 = gcd 𝑤, 𝑥 , 𝑏 = gcd(𝑦, 𝑧)

If 𝑏|𝑤 and 𝑏|𝑥 then 𝑏 is a common divisor of 𝑤, 𝑥 so 𝑏 ≤ 𝑎

If 𝑎|𝑦 and 𝑎|𝑧 then 𝑎 is a common divisor of 𝑦, 𝑧, so 𝑎 ≤ 𝑏

If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus
𝑥 ≤ 𝑦.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥.

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .

Another Extended Euclidian
Algorithm Example

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)

 = gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)

 = gcd(2, 3%2) = gcd(2,1)

 = gcd(1, 2%1) = gcd(1,0)

35 = 1 ⋅ 27 + 8

27 = 3 ⋅ 8 + 3

8 = 2 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8

27 = 3 ⋅ 8 + 3

8 = 2 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8

27 = 3 ⋅ 8 + 3

8 = 2 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1

8 = 35 − 1 ⋅ 27

3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27

3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27

3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2

 = 3 − 1 ⋅ 8 − 2 ⋅ 3
 = −1 ⋅ 8 + 2 ⋅ 3

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27

3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2

 = 3 − 1 ⋅ 8 − 2 ⋅ 3
 = −1 ⋅ 8 + 3 ⋅ 3
 = −1 ⋅ 8 + 3 27 − 3 ⋅ 8
 = 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)

= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting

back, you keep

the larger of 𝑚, 𝑛

and the number

you just

substituted.

Don’t simplify

further! (or you

lose the form you

need)

	Slide 1: Wrap-up Number Theory
	Slide 2: Today
	Slide 3: What’s the difference?
	Slide 4: When do we use proof by contradiction
	Slide 5: Extra Practice
	Slide 6: Just the Skeleton
	Slide 7: Just the Skeleton
	Slide 8: Just the Skeleton
	Slide 9: Just the Skeleton
	Slide 10: Small Techniques
	Slide 11: Proof By Cases
	Slide 12: Proof By Cases
	Slide 13: Proof By Cases
	Slide 14: Exists proofs
	Slide 15: Proof By [Counter]Example
	Slide 16: Skeleton of an Exists Proof
	Slide 17: More Mod proofs
	Slide 18: More proofs
	Slide 19: Another Proof
	Slide 20: Another Proof
	Slide 21: Another Proof
	Slide 22: Another Proof
	Slide 23: Uh-Oh
	Slide 24: Another Approach
	Slide 25: Another Approach
	Slide 26: Another Approach
	Slide 27: Number Theory Wrap-up
	Slide 28: Plan For Number Theory Wrap up
	Slide 29: GCD and LCM
	Slide 30: Try a few values…
	Slide 31: How do you calculate a gcd?
	Slide 32
	Slide 33: GCD facts
	Slide 34: So…what’s it good for?
	Slide 35: Bézout’s Theorem
	Slide 36: So…what’s it good for?
	Slide 37: Ok…how am I supposed to find s ,t ?
	Slide 38: Try it
	Slide 39: Finding the inverse…
	Slide 40: Finding the inverse…
	Slide 41: Try it
	Slide 42: RSA Encryption
	Slide 43: Key Steps in RSA
	Slide 44: Framing Device
	Slide 45: Framing Device
	Slide 46: Framing Device
	Slide 47: Framing Device
	Slide 48: An application of all of this modular arithmetic
	Slide 49: How big are those numbers?
	Slide 50: How do we accomplish those steps?
	Slide 51: Fast Exponentiation Algorithm
	Slide 52: Let’s build a faster algorithm.
	Slide 53: Fast Exponentiation Algorithm
	Slide 54: Fast Exponentiation Algorithm
	Slide 55: Fast Exponentiation Algorithm
	Slide 56: Fast Exponentiation Algorithm
	Slide 57: Fast Exponentiation Algorithm
	Slide 58: One More Example for Reference
	Slide 59: One More Example for Reference
	Slide 60: One More Example for Reference
	Slide 61: A Brief Concluding Remark
	Slide 62: An application of all of this modular arithmetic
	Slide 63: Why does the Euclidian Algorithm Work?
	Slide 64: Correctness of an algorithm
	Slide 65: GCD fact
	Slide 66: gcd(a,b) = gcd(b, a % b)
	Slide 67: gcd(a,b) = gcd(b, a % b)
	Slide 68: gcd(a,b) = gcd(b, a % b)
	Slide 69: Another Extended Euclidian Algorithm Example
	Slide 70: Extended Euclidian Algorithm
	Slide 71: Extended Euclidian Algorithm
	Slide 72: Extended Euclidian Algorithm
	Slide 73: Extended Euclidian Algorithm
	Slide 74: Extended Euclidian Algorithm
	Slide 75: Extended Euclidian Algorithm
	Slide 76: Extended Euclidian Algorithm

