
10/22/2024

1

public int Mystery(int m, int n){

if(m<n){

int temp = m;

m=n;

n=temp;

}

while(n != 0) {

int rem = m % n;

m=n;

n=rem;

}

return m;

}

Finding the inverse…
gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

= gcd(5, 7%5) = gcd(5,2)
= gcd(2, 5%2) = gcd(2, 1)
= gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ; 2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ; 1 = 5 − 2 ⋅ 2

31

38

10/22/2024

2

Let’s build a faster algorithm.
Fast exponentiation – simple case. What if 𝑒 is exactly 2ଵ?

int total = 1;
for(int i = 0; i < e; i++){

total = a * total % n;
}
Instead:
int total = a;
for(int i = 0; i < log(e); i++){

total = total^2 % n;
}

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and
an exponent 𝑒 (often about 60,000).
Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.
You compute 𝐶 = 𝑎%𝑛 and send Amazon 𝐶.
Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶ௗ%𝑛

Fact: 𝑎 = 𝐶ௗ%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎

51

61

