

8

÷

What's the difference?		
What's the difference between proof by contrapositive and proof by contradiction?		
Show $p o q$	Proof by contradiction	Proof by contrapositive
Starting Point	$\neg(p \to q) \equiv (p \land \neg q)$	$\neg q$
Target	Something false	$\neg p$
Show <i>p</i>	Proof by contradiction	Proof by contrapositive
Starting Point	$\neg p$	
Target	Something false	

Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many primes. Call them p_1, p_2, \ldots, p_k .

Consider the number $q = p_1 \cdot p_2 \cdot \dots \cdot p_k + 1$

Case 1: q is prime

Case 2: q is composite

But [] is a contradiction! So there must be infinitely many primes.

18

Just the Skeleton

"For all integers x, if x^2 is even, then x is even."