
More Number Theory CSE 311 24Au

Lecture 11

Extra Vacuous Truth resources

https://courses.cs.washington.edu/courses/cse311/24au/resources/reading02-vacuous.pdf

https://courses.cs.washington.edu/courses/cse311/24au/resources/reading02-vacuous.pdf

TAs noticed many errors with vacuous truth in the last homework.

Vacuous truth refers to only “𝐹 →?” lines of the implication truth table

"𝑇 → 𝑇” is a true implication, but it’s not vacuous.

“𝑇 → 𝐹” is a false implication

If you don’t see an implication with a false hypothesis it isn’t vacuous
truth.

Reading with examples and “why is vacuous truth the right definition”
https://courses.cs.washington.edu/courses/cse311/24au/resources/readi
ng02-vacuous.pdf

https://courses.cs.washington.edu/courses/cse311/24au/resources/reading02-vacuous.pdf
https://courses.cs.washington.edu/courses/cse311/24au/resources/reading02-vacuous.pdf

You Try!
Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛 with 𝑛 > 0:

If 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛)

Before we start we must know:

1. What every word in the statement means.

2. What the statement as a whole means.

3. Where to start.

4. What your target is.

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides

Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛, with 𝑛 > 0:
𝑎 ≡ 𝑏 mod 𝑛 → 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑛)

Proof:

Let 𝑎, 𝑏, 𝑐, 𝑛 be arbitrary integers with 𝑛 > 0
and suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛)

Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛, with 𝑛 > 0:
𝑎 ≡ 𝑏 mod 𝑛 → 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑛)

Proof:

Let 𝑎, 𝑏, 𝑐, 𝑛 be arbitrary integers with 𝑛 > 0
and suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

By definition of mod 𝑛|(𝑏 − 𝑎)

By definition of divides, 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘

 Multiplying both sides by 𝑐, we have 𝑛 𝑐𝑘 = 𝑏𝑐 − 𝑎𝑐.

Since 𝑐 and 𝑘 are integers, 𝑛|(𝑏𝑐 − 𝑎𝑐) by definition of divides.

So, 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛), by the definition of mod.

Don’t lose your intuition!

Let’s check that we understand “intuitively” what mod means:

𝑥 ≡ 0 (mod 2)

−1 ≡ 19 (mod 5)

𝑦 ≡ 2 (mod 7)

“𝑥 is even” Note that negative (even) 𝑥 values also make this true.

This is true! They both have remainder 4 when divided by 5.

This is true as long as 𝑦 = 2 + 7𝑘 for some integer 𝑘

Proof by Contrapositive

Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐

Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐There has to be a better way!

Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

There has to be a better way!

If only there were some equivalent implication…

One where we could negate everything…

Take the contrapositive of the statement:

For all integers, 𝑎, 𝑏, 𝑐: Show if 𝑎|𝑏 and 𝑎|𝑐 then 𝑎|(𝑏𝑐).

By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐.

Therefore 𝑎|𝑏𝑐

By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐.

By definition of divides, 𝑎𝑥 = 𝑏 and 𝑎𝑦 = 𝑐 for integers 𝑥 and 𝑦.

Multiplying the two equations, we get 𝑎𝑥𝑎𝑦 = 𝑏𝑐

Since 𝑎, 𝑥, 𝑦 are all integers, 𝑥𝑎𝑦 is an integer. Applying the definition of
divides, we have 𝑎|𝑏𝑐.

Signs you might want to
use proof by contrapositive

1. The hypothesis of the implication you’re proving has a “not” in it (that
you think is making things difficult)

2. The target of the implication you’re proving has an “or” or “not” in it.

3. There’s a step that is difficult forward, but easy backwards
e.g., taking a square-root forward, squaring backwards.

4. You get halfway through the proof and you can’t “get ahold of” what
you’re trying to show.
e.g., you’re working with a “not equal” instead of an “equals” or “every thing doesn’t
have this property” instead of “some thing does have that property”

All of these are reasons you might want contrapositive. Sometimes you
just have to try and see what happens!

Logical Ordering

Logical Ordering

When doing a proof, we often work from both sides…

But we have to be careful!

When you read from top to bottom, every step has to follow only from
what’s before it, not after it.

Suppose our target is 𝑞 and I know 𝑞 → 𝑝 and 𝑟 → 𝑞.

What can I put as a “new target?”

Logical Ordering

So why have all our prior steps been ok backward?

They’ve all been either:

A definition (which is always an “if and only if”)

An algebra step that is an “if and only if”

Even if your steps are “if and only if” you still have to put everything in
order – start from your assumptions, and only assert something once it
can be shown.

A bad proof

Claim: if x is positive then 𝑥 + 5 = −𝑥 − 5.

𝑥 + 5 = −𝑥 − 5

𝑥 + 5 = −𝑥 − 5

|𝑥 + 5| = | − (𝑥 + 5)|

𝑥 + 5 = |𝑥 + 5|

0 = 0

This claim is false – if you’re trying to do algebra, you need to start with
an equation you know (say 𝑥 = 𝑥 or 2 = 2 or 0 = 0) and expand to the
equation you want.

GCD and LCM

GCD and LCM

The Greatest Common Divisor of 𝑎 and 𝒃 (gcd(a,b)) is the

largest integer 𝒄 such that 𝒄|𝒂 and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃 (lcm(a,b)) is the

smallest positive integer 𝒄 such that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple

Try a few values…

gcd(100,125)

gcd(17,49)

gcd(17,34)

gcd(13,0)

lcm(7,11)

lcm(6,10)

How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(23 ⋅ 3, 22 ⋅ 5) = 2^{min(2,3)} = 2^2 = 4.

(lcm has a similar algorithm – take the maximum number of copies of
everything)

But that’s….really expensive. Mystery finds gcd.

public int Mystery(int m, int n){

 if(m<n){

 int temp = m;

 m=n;

 n=temp;

 }

 while(n != 0) {

 int rem = m % n;

 m=n;

 n=rem;

 }

 return m;

}

Running Mystery

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

 = gcd(5, 7%5) = gcd(5,2)

 = gcd(2, 5%2) = gcd(2, 1)

 = gcd(1, 2%1) = gcd(1,0)= 1.

GCD facts

1. gcd(a,0)=a

Pf: 𝑎 is a common divisor (𝑎 = 1 ⋅ 𝑎; 0 = 0 ⋅ 𝑎); larger numbers don’t
divide 𝑎 (for positive numbers, if 𝑥|𝑦 then 𝑥 ≤ 𝑦)

2. If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

Why is 2 true? The proof isn’t easy, it’s at the end of this deck.

Why should you care?

So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 3 𝑚𝑜𝑑 𝑛

Just multiply both sides by
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

What number can we pick?

The next two slides are going to get more abstract…we’re listing out the
facts we need to solve that equation.

Remember everything we’re

learning contributes to us

eventually understanding RSA.

This is a key step in generating keys.

Bézout’s Theorem

We’re not going to prove this theorem…

But it turns out Mystery can be extended to find them.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔

and 𝒕 such that

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem

Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

 = gcd(5, 7%5) = gcd(5,2)

 = gcd(2, 5%2) = gcd(2, 1)

 = gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ; 2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ; 1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)

= 3 ⋅ 5 − 2 ⋅ 7
= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7

3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse of 7 for

(mod 26) arithmetic!

We’ll write that as 15, since we’re

working mod 26.

So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 3 𝑚𝑜𝑑 𝑛

Just multiply both sides by
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) = 1

Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .

So the 𝑠 from Bézout’s Theorem is what we should multiply by!

Ok…how am I supposed to find 𝑠, 𝑡?

It turns out that while you’re calculating the gcd (using the Mystery
algorithm), you can keep some extra information recorded, and end up
with the 𝑠, 𝑡

This is called the “extended Euclidian algorithm”

Examples in these slides.

Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find?

The multiplicative inverse of 7(mod 26)

Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

 = gcd(5, 7%5) = gcd(5,2)

 = gcd(2, 5%2) = gcd(2, 1)

 = gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ; 2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ; 1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)

= 3 ⋅ 5 − 2 ⋅ 7
= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7

3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse of 7 for

(mod 26) arithmetic!

We’ll write that as 15, since we’re

working mod 26.

Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find?

The multiplicative inverse of 7 (𝑚𝑜𝑑 26). We found it’s 15.

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)

𝑦 ≡ 45(𝑚𝑜𝑑 26)

Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)

So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ

Solutions: {… , −7,19,45, … 19 + 26𝑘, … } i.e. {𝑥: 𝑥 = 19 + 26𝑘 for some 𝑘 ∈ ℤ}

Proving the key fact about gcds

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus
𝑥 ≤ 𝑦.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥.

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .

More Mod proofs

More proofs

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Step 1: What do the words mean?

Step 2: What does the statement as a whole say?

Step 3: Where do we start?

Step 4: What’s our target?

Step 5: Now prove it.

Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛𝑘𝑛𝑗 = (𝑑 − 𝑐)(𝑏 − 𝑎) by multiplying the two equations

𝑛𝑘𝑛𝑗 = (𝑏𝑑 − 𝑏𝑐 − 𝑎𝑑 + 𝑎𝑐)

…

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛𝑘𝑛𝑗 = (𝑑 − 𝑐)(𝑏 − 𝑎) by multiplying the two equations

𝑛𝑘𝑛𝑗 = (𝑏𝑑 − 𝑏𝑐 − 𝑎𝑑 + 𝑎𝑐)

And then a miracle occurs

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Uh-Oh

We hit (what looks like) a dead end.

But how did I know we hit a dead end? Because I knew exactly where
we needed to go. If you didn’t, you’d have been staring at that for ages
trying to figure out the magic step.

(or worse, assumed you lost a minus sign somewhere, and just “fixed”
it….)

Let’s try again. This time, let’s separate 𝑏 from 𝑎 and 𝑑 from 𝑐 before
combining.

Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐 ,

𝑏𝑑 = 𝑛𝑘 + 𝑎 𝑛𝑗 + 𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 + 𝑎𝑐

𝑏𝑑 − 𝑎𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 = 𝑛(𝑛𝑘𝑗 + 𝑎𝑗 + 𝑐𝑘)

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

Isolating,𝑏 and 𝑑, we have: 𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐

Multiplying the equations, and factoring, 𝑏𝑑 = 𝑛𝑘 + 𝑎 𝑛𝑗 + 𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 + 𝑎𝑐

Rearranging, and facoring out n: 𝑏𝑑 − 𝑎𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 = 𝑛(𝑛𝑘𝑗 + 𝑎𝑗 + 𝑐𝑘)

Since all of 𝑛, 𝑗, 𝑘, 𝑎, and 𝑐 are integers, we have that 𝑏𝑑 − 𝑎𝑐 is 𝑛 times an integer, so

𝑛|(𝑏𝑑 − 𝑎𝑐), and by definition of mod

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)

Euclidian Algorithm

Euclid’s Algorithm

gcd(660,126)

while(n != 0) {

 int rem = m % n;

 m=n;

 n=rem;

 }

Euclid’s Algorithm

gcd(660,126)

while(n != 0) {

 int rem = m % n;

 m=n;

 n=rem;

 }

= gcd(126, 660 mod 126) = gcd(126, 30)

= gcd(30, 126 mod 30) = gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)

= 6

Tableau form

660 = 5 ⋅ 126 + 30
126 = 4 ⋅ 30 + 6

30 = 5 ⋅ 6 + 0

Starting Numbers

Final

answer

Bézout’s Theorem

We’re not going to prove this theorem…

But we’ll show you how to find 𝑠,𝑡 for any positive integers 𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔

and 𝒕 such that

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27) = gcd(27, 35%27) = gcd(27,8)

 = gcd(8, 27%8) = gcd(8, 3)

 = gcd(3, 8%3) = gcd(3, 2)

 = gcd(2, 3%2) = gcd(2,1)

 = gcd(1, 2%1) = gcd(1,0)

35 = 1 ⋅ 27 + 8

27 = 3 ⋅ 8 + 3

8 = 2 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8

27 = 3 ⋅ 8 + 3

8 = 2 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8

27 = 3 ⋅ 8 + 3

8 = 2 ⋅ 3 + 2

3 = 1 ⋅ 2 + 1

8 = 35 − 1 ⋅ 27

3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27

3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27

3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2

 = 3 − 1 ⋅ 8 − 2 ⋅ 3
 = −1 ⋅ 8 + 2 ⋅ 3

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27

3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2

 = 3 − 1 ⋅ 8 − 2 ⋅ 3
 = −1 ⋅ 8 + 3 ⋅ 3
 = −1 ⋅ 8 + 3 27 − 3 ⋅ 8
 = 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)

= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting

back, you keep

the larger of 𝑚, 𝑛

and the number

you just

substituted.

Don’t simplify

further! (or you

lose the form you

need)

	Slide 1: More Number Theory
	Slide 2: Extra Vacuous Truth resources
	Slide 3: You Try!
	Slide 4
	Slide 5
	Slide 6: Don’t lose your intuition!
	Slide 7: Proof by Contrapositive
	Slide 8: Another Proof
	Slide 9: Another Proof
	Slide 10: Another Proof
	Slide 11: Another Proof
	Slide 12: By contrapositive
	Slide 13: By contrapositive
	Slide 14: Signs you might want to use proof by contrapositive
	Slide 15: Logical Ordering
	Slide 16: Logical Ordering
	Slide 17: Logical Ordering
	Slide 18: A bad proof
	Slide 19: GCD and LCM
	Slide 20: GCD and LCM
	Slide 21: Try a few values…
	Slide 22: How do you calculate a gcd?
	Slide 23
	Slide 24: Running Mystery
	Slide 25: GCD facts
	Slide 26: So…what’s it good for?
	Slide 27: Bézout’s Theorem
	Slide 28: Finding the inverse…
	Slide 29: So…what’s it good for?
	Slide 30: Ok…how am I supposed to find s ,t ?
	Slide 31: Try it
	Slide 32: Finding the inverse…
	Slide 33: Try it
	Slide 34: Proving the key fact about gcds
	Slide 35: gcd(a,b) = gcd(b, a % b)
	Slide 36: gcd(a,b) = gcd(b, a % b)
	Slide 37: gcd(a,b) = gcd(b, a % b)
	Slide 38: More Mod proofs
	Slide 39: More proofs
	Slide 40: Another Proof
	Slide 41: Another Proof
	Slide 42: Another Proof
	Slide 43: Another Proof
	Slide 44: Uh-Oh
	Slide 45: Another Approach
	Slide 46: Another Approach
	Slide 47: Another Approach
	Slide 48: Euclidian Algorithm
	Slide 49: Euclid’s Algorithm
	Slide 50: Euclid’s Algorithm
	Slide 51: Bézout’s Theorem
	Slide 52: Extended Euclidian Algorithm
	Slide 53: Extended Euclidian Algorithm
	Slide 54: Extended Euclidian Algorithm
	Slide 55: Extended Euclidian Algorithm
	Slide 56: Extended Euclidian Algorithm
	Slide 57: Extended Euclidian Algorithm
	Slide 58: Extended Euclidian Algorithm

