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Extra Example

Inference Proof with Even/Odd definitions



If 𝑥 is even, then 𝑥2 is even.

1. Let 𝑎 be arbitrary

   2.1 Even(𝑎)

   2.2 ∃𝑦 (2𝑦 = 𝑎)

   2.3 2𝑧 = 𝑎

   2.4 𝑎2 = 4𝑧2

   2.5 𝑎2 = 2 ⋅ 2𝑧2

   2.6 ∃𝑤(2𝑤 = 𝑎2)

   2.7 Even(𝑎2)

3. Even 𝑎 →Even(𝑎2)

4. ∀𝑥(Even 𝑥 →Even(𝑥2))

Assumption

Definition of Even (2.1)

Elim ∃ 2.2

Algebra (2.3)

Algebra (2.4)

Intro ∃ (2.5)

Definition of Even

Direct Proof Rule (2.1-2.7)

Intro ∀ (3)



If 𝑥 is even, then 𝑥2 is even.

1. Let 𝑎 be arbitrary

   2.1 Even(𝑎)

   2.2 ∃𝑦 (2𝑦 = 𝑎)

   2.3 2𝑧 = 𝑎

   2.4 𝑎2 = 4𝑧2

   2.5 𝑎2 = 2 ⋅ 2𝑧2

   2.6 ∃𝑤(2𝑤 = 𝑎2)

   2.7 Even(𝑎2)

3. Even 𝑎 →Even(𝑎2)

4. ∀𝑥(Even 𝑥 →Even(𝑥2))

Assumption

Definition of Even (2.1)

Elim ∃ 2.2

Algebra (2.3)

Algebra (2.4)

Intro ∃ (2.5)

Definition of Even

Direct Proof Rule (2.1-2.7)

Intro ∀ (3)

Let 𝑥 be an arbitrary even integer. 

By definition, there is an integer 𝑦 such 

that 2𝑦 = 𝑥.

Squaring both sides, we see that 𝑥2 =
4𝑦2 = 2 ⋅ 2𝑦2.

Because 𝑦 is an integer, 2𝑦2 is also an 

integer, and 𝑥2 is two times an integer.

Thus 𝑥2 is even by the definition of 

even.

Since 𝑥 was an arbitrary even integer, 

we can conclude that for every even 𝑥, 

𝑥2 is also even. 



Number Theory



Divides

Which of these are true?

   2|4                                  4|2                        2| − 2

               5|0                                  0|5                         1|5

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff 

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides



Divides

Which of these are true?

   2|4                                  4|2                        2| − 2

               5|0                                  0|5                         1|5

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff 

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides

True False

FalseTrue True

True



A useful theorem 

Remember when non integers were still secret, you did division like this?

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

𝑞 is the “quotient”

𝑟 is the “remainder”



Unique

“unique” means “only one”….but be careful with how this word is used.

𝑟 is unique, given 𝑎, 𝑑. – it still depends on 𝑎, 𝑑 but once you’ve chosen 
𝑎 and 𝑑 

“unique” is not saying ∃𝑟∀𝑎, 𝑑 𝑃(𝑎, 𝑑, 𝑟)
It’s saying ∀𝑎, 𝑑∃𝑟[𝑃 𝑎, 𝑑, 𝑟 ∧ 𝑃 𝑎, 𝑑, 𝑥 → 𝑥 = 𝑟 ]

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem



A useful theorem 

The 𝑞 is the result of a/d (integer division) in Java

The 𝑟 is the result of a%d in Java

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

That’s slightly a lie, 𝑟 is always non-

negative, Java’s % operator sometimes 

gives a negative number.



Terminology

You might have called the % operator in Java “mod”

We’re going to use the word “mod” to mean a closely related, but 
different thing.

Java’s % is an operator (like + or ⋅) you give it two numbers, it produces 
a number. 

The word “mod” in this class, refers to a set of rules



Modular Arithmetic

“arithmetic mod 12” is familiar to you. You do it with clocks.

What’s 3 hours after 10 o’clock?

1 o’clock. You hit 12 and then “wrapped around”

“13 and 1 are the same, mod 12” “-11 and 1 are the same, mod 12”

We don’t just want to do math for clocks – what about if we need to talk 
about parity (even vs. odd) or ignore higher-order-bits (mod by 16, for 
example)



Modular Arithmetic

To say “the same” we don’t want to use = … that means the normal =

We’ll write 13 ≡ 1(mod 12)

≡ because “equivalent” is “like equal,” and the “modulus” we’re using in 
parentheses at the end so we don’t forget it. 
(we’ll also say “congruent mod 12”)

The notation here is bad. We all agree it’s bad. Most people still use it.

13 ≡12 1 would have been better. “mod 12” is giving you information 
about the ≡ symbol, it’s not operating on 1.



Modular Arithmetic

We need a definition! We can’t just say “it’s like a clock”

Pause what do you expect the definition to be?

Is it related to % ?



Modular Arithmetic

We need a definition! We can’t just say “it’s like a clock”

Pause what do you expect the definition to be?

Let 𝑎, 𝑏, 𝑛 be integers with 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

Huh?



Long Pause

It’s easy to read something with a bunch of symbols and say “yep, those 
are symbols.” and keep going

STOP Go Back. 

You have to fight the symbols they’re probably trying to pull a fast one 
on you. 

Same goes for when I’m presenting a proof – you shouldn’t just believe 
me – I’m wrong all the time!

You should be trying to do the proof with me. Where do you think we’re 
going next?



Why? 

Here’s the short version:

It really is equivalent to ”what we expected”
a%n=b%n if and only if 𝑛|(𝑏 − 𝑎)

The divides version is much easier to use in proofs…

27

15

27 − 15 = 12

When you subtract, 

the remainders cancel. 

What you’re left with 

is a multiple of 12.



Proof Practice

Over the next few weeks:

Practice direct proofs in English (formatting details, doing more 
examples)

See a few other proof techniques
Proof by contrapositive, proving an exists statement, proof by contradiction

All while learning some number theory.



Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛, with 𝑛 > 0: 
𝑎 ≡ 𝑏 mod 𝑛 → 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑛)

Before we start, we must know:

1. What every word in the statement means.

2. What the statement as a whole means.

3. Where to start.

4. What your target is.

Let 𝑎, 𝑏, 𝑛 be integers with 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff 

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides



Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛, with 𝑛 > 0: 
𝑎 ≡ 𝑏 mod 𝑛 → 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑛)

Proof: 

Let 𝑎, 𝑏, 𝑐, 𝑛 be arbitrary integers with 𝑛 > 0, 
and suppose 𝑎 ≡ 𝑏(mod 𝑛).

𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑛)
Let 𝑎, 𝑏, 𝑛 be integers with 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff 

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides



A proof

Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛, with 𝑛 > 0: 
𝑎 ≡ 𝑏 mod 𝑛 → 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑛)

Proof:

Let 𝑎, 𝑏, 𝑐, 𝑛 be arbitrary integers with 𝑛 > 0, 
and suppose 𝑎 ≡ 𝑏(mod 𝑛).

By definition of mod, n|(𝑏 − 𝑎)

By definition of divides, 𝑛𝑘 = (𝑏 − 𝑎) for some integer 𝑘.

Adding and subtracting c, we have 𝑛𝑘 = ( 𝑏 + 𝑐 − a + c ).

Since 𝑘 is an integer 𝑛|( 𝑏 + 𝑐 − 𝑎 + 𝑐 )

By definition of mod, 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑛)



You Try!
Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛 with 𝑛 > 0: 

If 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛)

Before we start we must know:

1. What every word in the statement means.

2. What the statement as a whole means.

3. Where to start.

4. What your target is.

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff 

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides



Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛, with 𝑛 > 0: 
𝑎 ≡ 𝑏 mod 𝑛 → 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑛)

Proof:

Let 𝑎, 𝑏, 𝑐, 𝑛 be arbitrary integers with 𝑛 > 0
and suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛)



Claim: for all integers 𝑎, 𝑏, 𝑐, 𝑛, with 𝑛 > 0: 
𝑎 ≡ 𝑏 mod 𝑛 → 𝑎 + 𝑐 ≡ 𝑏 + 𝑐 (mod 𝑛)

Proof:

Let 𝑎, 𝑏, 𝑐, 𝑛 be arbitrary integers with 𝑛 > 0
and suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

By definition of mod 𝑛|(𝑏 − 𝑎)

By definition of divides, 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘

 Multiplying both sides by 𝑐, we have 𝑛 𝑐𝑘 = 𝑏𝑐 − 𝑎𝑐.

Since 𝑐 and 𝑘 are integers, 𝑛|(𝑏𝑐 − 𝑎𝑐) by definition of divides.

So, 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛), by the definition of mod.



Don’t lose your intuition!

Let’s check that we understand “intuitively” what mod means:

𝑥 ≡ 0 (mod 2)

−1 ≡ 19 (mod 5)

𝑦 ≡ 2 (mod 7)

“𝑥 is even” Note that negative (even) 𝑥 values also make this true.

This is true! They both have remainder 4 when divided by 5.

This is true as long as 𝑦 = 2 + 7𝑘 for some integer 𝑘



Proof by Contrapositive



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

Proof:

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎 ∤ 𝑏𝑐 .

Then there is not an integer 𝑧 such that 𝑎𝑧 = 𝑏𝑐

…

So 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐There has to be a better way!



Another Proof

For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

There has to be a better way! 

If only there were some equivalent implication…

One where we could negate everything…

Take the contrapositive of the statement:

For all integers, 𝑎, 𝑏, 𝑐: Show if 𝑎|𝑏 and 𝑎|𝑐 then 𝑎|(𝑏𝑐).



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

Therefore 𝑎|𝑏𝑐



By contrapositive

Claim: For all integers, 𝑎, 𝑏, 𝑐: Show that if 𝑎 ∤ (𝑏𝑐) then 𝑎 ∤ 𝑏 or 𝑎 ∤ 𝑐.

We argue by contrapositive.

Let 𝑎, 𝑏, 𝑐 be arbitrary integers, and suppose 𝑎|𝑏 and 𝑎|𝑐. 

By definition of divides, 𝑎𝑥 = 𝑏 and 𝑎𝑦 = 𝑐 for integers 𝑥 and 𝑦.

Multiplying the two equations, we get 𝑎𝑥𝑎𝑦 = 𝑏𝑐

Since 𝑎, 𝑥, 𝑦 are all integers, 𝑥𝑎𝑦 is an integer. Applying the definition of 
divides, we have 𝑎|𝑏𝑐.



Logical Ordering



Logical Ordering

When doing a proof, we often work from both sides…

But we have to be careful!

When you read from top to bottom, every step has to follow only from 
what’s before it, not after it.

Suppose our target is 𝑞 and I know 𝑞 → 𝑝 and 𝑟 → 𝑞.

What can I put as a “new target?”



Logical Ordering

So why have all our prior steps been ok backward?

They’ve all been either:

A definition (which is always an “if and only if”)

An algebra step that is an “if and only if”

Even if your steps are “if and only if” you still have to put everything in 
order – start from your assumptions, and only assert something once it 
can be shown. 



A bad proof

Claim: if x is positive then 𝑥 + 5 = −𝑥 − 5.

𝑥 + 5 = −𝑥 − 5

𝑥 + 5 = −𝑥 − 5

|𝑥 + 5| = | − (𝑥 + 5)|

𝑥 + 5 = |𝑥 + 5|

0 = 0 

This claim is false – if you’re trying to do algebra, you need to start with 
an equation you know (say 𝑥 = 𝑥 or 2 = 2 or 0 = 0) and expand to the 
equation you want.



More Mod proofs



More proofs

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Step 1: What do the words mean? 

Step 2: What does the statement as a whole say?

Step 3: Where do we start?

Step 4: What’s our target?

Step 5: Now prove it.



Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0 
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0 
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0 
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛𝑘𝑛𝑗 = (𝑑 − 𝑐)(𝑏 − 𝑎) by multiplying the two equations

𝑛𝑘𝑛𝑗 = (𝑏𝑑 − 𝑏𝑐 − 𝑎𝑑 + 𝑎𝑐)

…

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Proof

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0 
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑛𝑘𝑛𝑗 = (𝑑 − 𝑐)(𝑏 − 𝑎) by multiplying the two equations

𝑛𝑘𝑛𝑗 = (𝑏𝑑 − 𝑏𝑐 − 𝑎𝑑 + 𝑎𝑐)

And then a miracle occurs

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Uh-Oh

We hit (what looks like) a dead end. 

But how did I know we hit a dead end? Because I knew exactly where 
we needed to go. If you didn’t, you’d have been staring at that for ages 
trying to figure out the magic step.

(or worse, assumed you lost a minus sign somewhere, and just “fixed” 
it….)

Let’s try again. This time, let’s separate 𝑏 from 𝑎 and 𝑑 from 𝑐 before 
combining.



Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0 
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐  

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0 
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐 ,  

𝑏𝑑 = 𝑛𝑘 + 𝑎 𝑛𝑗 + 𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 + 𝑎𝑐

𝑏𝑑 − 𝑎𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 = 𝑛(𝑛𝑘𝑗 + 𝑎𝑗 + 𝑐𝑘)

𝑛? ? = 𝑏𝑑 − 𝑎𝑐

𝑛|(𝑏𝑑 − 𝑎𝑐)

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Another Approach

Show that if 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 ∈ ℤ, 𝑛 ≥ 0 
and suppose 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛).

𝑛|(𝑏 − 𝑎) and 𝑛|(𝑑 − 𝑐) by definition of mod.

𝑛𝑘 = (𝑏 − 𝑎) and 𝑛𝑗 = (𝑑 − 𝑐) for integers 𝑗, 𝑘 by definition of divides.

Isolating,𝑏 and 𝑑, we have: 𝑏 = 𝑛𝑘 + 𝑎, 𝑑 = 𝑛𝑗 + 𝑐 

Multiplying the equations, and factoring, 𝑏𝑑 = 𝑛𝑘 + 𝑎 𝑛𝑗 + 𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 + 𝑎𝑐

Rearranging, and facoring out n:  𝑏𝑑 − 𝑎𝑐 = 𝑛2𝑘𝑗 + 𝑎𝑛𝑗 + 𝑐𝑛𝑘 = 𝑛(𝑛𝑘𝑗 + 𝑎𝑗 + 𝑐𝑘)

Since all of 𝑛, 𝑗, 𝑘, 𝑎, and 𝑐 are integers, we have that 𝑏𝑑 − 𝑎𝑐 is 𝑛 times an integer, so 

𝑛|(𝑏𝑑 − 𝑎𝑐), and by definition of mod

𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑛)



Extra Practice



Warm-up

Show that if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

Now that we’ve proven this, we aren’t going to care whether you write 
𝑛|(𝑏 − 𝑎) or 𝑛|(𝑎 − 𝑏) when you write the definition.
We can’t remember the right order either.



Warm-up

Show that if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

Let 𝑎, 𝑏 be arbitrary integers and let 𝑛 be an arbitrary integer > 0, and 
suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

By definition of equivalence mod 𝑛, 𝑛| 𝑏 − 𝑎 . By definition of divides, 
𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘. Multiplying by −1, we get 

𝑛 −𝑘 = 𝑎 − 𝑏

Since 𝑘 was an integer, so is −𝑘. Thus 𝑛|(𝑎 − 𝑏), and by definition of 
mod, 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛).



Extra Practice!



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛  Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛  if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 𝑛|(𝑏 − 𝑎) 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) 𝑛| 𝑎 − 𝑏 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛  Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that 
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division 
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)



% and Mod

Other resources use 𝑚𝑜𝑑 to mean an operation (takes in an integer, 
outputs an integer). We will not in this course. 𝑚𝑜𝑑 only describes ≡. It’s 
not “just on the right hand side” 

Define 𝑎%𝑏 to be “the 𝑟 you get from the division theorem”
i.e. the integer 𝑟 such that 0 ≤ 𝑟 < 𝑑 and 𝑎 = 𝑏𝑞 + 𝑟 for some integer 𝑞.

This is the “mod function”

I claim 𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

How do we show and if-and-only-if?



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑛|𝑏 − 𝑎 so 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘. (by definitions of mod and 
divides).

So 𝑎 = 𝑏 − 𝑛𝑘

Taking each side %𝑛 we get:

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

Where the last equality follows from 𝑘 being an integer and doing 𝑘 
applications of the identity we proved in the warm-up.



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Show the forward direction:

If 𝑎%𝑛 = 𝑏%𝑛 then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

This proof is a bit different than the other direction.

Remember to work from top and bottom!!

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Forward direction:

Suppose 𝑎%𝑛 = 𝑏%𝑛.

By definition of %, 𝑎 = 𝑘𝑛 + (𝑎%𝑛) and 𝑏 = 𝑗𝑛 + 𝑏%𝑛  for integers 𝑘, 𝑗

Isolating 𝑎%𝑛 we have 𝑎%𝑛 = 𝑎 − 𝑘𝑛. Since 𝑎%𝑛 = 𝑏%𝑛, we can plug 
into the second equation to get: 𝑏 = 𝑗𝑛 + (𝑎 − 𝑘𝑛)

Rearranging, we have 𝑏 − 𝑎 = 𝑗 − 𝑘 𝑛. Since 𝑘, 𝑗 are integers we have 
𝑛|(𝑏 − 𝑎).

By definition of mod we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).
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