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Inference Rules

𝐴 ∧ 𝐵

𝐴, 𝐵∴
Eliminate ∧

𝐴 ∨ 𝐵,¬𝐴

𝐵∴
Eliminate ∨

𝐴, 𝐵

𝐴 ∧ 𝐵∴
Intro ∧

𝐴

𝐴 ∨ 𝐵, 𝐵 ∨ 𝐴∴
Intro ∨

𝐴 ⇒ 𝐵

𝐴 → 𝐵

Direct Proof 

rule

𝑃 → 𝑄,𝑃

𝑄∴

Modus 

Ponens

You can still use all the 

propositional logic 

equivalences too!



Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Here’s a corrected version of the proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟
4.1 𝑝

4.2 𝑞

4.3 𝑟

5. 𝑝 → 𝑟

Given

Eliminate ∧ 1
Eliminate ∧ 1

Assumption
Modus Ponens 4.1,2
Modus Ponens 4.2,3

Direct Proof Rule

When introducing an assumption 

to prove an implication:

Indent, and change numbering.

When reached your 

conclusion, use the Direct 

Proof Rule to observe the 

implication is a fact.

The conclusion is an unconditional fact (doesn’t 

depend on 𝑝) so it goes back up a level



Try it!

Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟. 
Show: 𝑠 → 𝑝



Try it!

Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟. 
Show: 𝑠 → 𝑝

1. 𝑝 ∨ 𝑞
2. 𝑟 ∧ 𝑠 → ¬𝑞
3. 𝑟

4.1 𝑠
4.2 𝑟 ∧ 𝑠
4.3 ¬𝑞
4.4 𝑞 ∨ 𝑝
4.5 𝑝

5. 𝑠 → 𝑝

Given

Given

Given

Assumption

Intro ∧ (3,4.1)

Modus Ponens (2, 4.2)

Commutativity (1)

Eliminate ∨ (4.4, 4.3)

Direct Proof Rule



Caution

Be careful! Logical inference rules can only be applied to entire facts. They 
cannot be applied to portions of a statement (our propositional 
equivalences could apply to subexpressions). Why not for inference rules?

Suppose we know 𝑝 → 𝑞, 𝑟. Can we conclude 𝑞? 

1. 𝑝 → 𝑞

2. 𝑟

3. 𝑝 ∨ 𝑟 → 𝑞

4. 𝑝 ∨ 𝑟

5. 𝑞

Given

Given

Introduce ∨ (1)

Introduce ∨ (2)

Modus Ponens 3,4.

𝐴

𝐴 ∨ 𝐵, 𝐵 ∨ 𝐴∴
Intro ∨



Inference Proofs in Predicate Logic



Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic. 

To include predicate logic, we’ll need some rules about how to use 
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Let’s see a good example, then come back to those “arbitrary” and “fresh” 
conditions.



Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[ 𝑃 𝑦 → 𝑄 𝑦 ]. Conclude ∃𝑥𝑄(𝑥).

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃



Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[ 𝑃 𝑦 → 𝑄 𝑦 ]. Conclude ∃𝑥𝑄(𝑥).

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃



Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[ 𝑃 𝑦 → 𝑄 𝑦 ]. Conclude ∃𝑥𝑄(𝑥).

1. ∃𝑥𝑃(𝑥)
2. 𝑃(𝑎)
3. ∀𝑦[𝑃 𝑦 → 𝑄 𝑦 ]
4. 𝑃 𝑎 → 𝑄(𝑎)
5. 𝑄(𝑎)
6. ∃𝑥𝑄(𝑥)

Given

Eliminate ∃ 1

Given

Eliminate ∀ 3

Modus Ponens 2,4

Intro ∃ 5 ∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃



Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic. 

To include predicate logic, we’ll need some rules about how to use 
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

“arbitrary” means 𝑎 is “just” a variable in our domain. 

It doesn’t depend on any other variables and wasn’t introduced 

with other information.



Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic. 

To include predicate logic, we’ll need some rules about how to use 
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

“fresh” means 𝑐 is a new symbol (there isn’t another 𝑐
somewhere else in our proof).



Fresh and Arbitrary

1. ∃𝑥 𝑃 𝑥

2. 𝑃(𝑎)

3. ∀𝑥 𝑃(𝑥)

Given

Eliminate ∃ (1)

Intro ∀ (2)

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

This proof is definitely wrong.

(take 𝑃(𝑥) to be “is a prime number”)

Suppose we know ∃𝑥𝑃 𝑥 . Can we conclude ∀𝑥𝑃 𝑥 ?

𝑎 wasn’t arbitrary. We knew something about 

it – it’s the 𝑥 that exists to make 𝑃 𝑥 true.



Fresh and Arbitrary

You can trust a variable to be arbitrary if you introduce it as such.

If you eliminated a ∀ to create a variable, that variable is arbitrary. 
Otherwise it’s not arbitrary – it depends on something.

You can trust a variable to be fresh if the variable doesn’t appear 
anywhere else (i.e. just use a new letter) 

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃



Fresh and Arbitrary

There are no similar concerns with these two rules.

Want to reuse a variable when you eliminate ∀? Go ahead.

Have a 𝑐 that depends on many other variables, and want to intro ∃?

Also not a problem.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃



Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦 ]. Let’s prove it!!



Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦 ]. Let’s prove it!!

1.1 ∃𝑦∀𝑥 𝑃 𝑥, 𝑦
1.2 ∀𝑥 𝑃 𝑥, 𝑐
1.3 Let 𝑎 be arbitrary.

1.4 𝑃(𝑎, 𝑐)
1.5 ∃𝑦 𝑃 𝑎, 𝑦
1.6 ∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

2. ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃(𝑥, 𝑦)]

Assumption

Elim ∃ (1.1)

--

Elim ∀ (1.2)

Intro ∃ (1.4)

Intro ∀ (1.5)

Direct Proof Rule



Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦 ]. Let’s prove it!!

1.1 ∃𝑦∀𝑥 𝑃 𝑥, 𝑦
1.2 ∀𝑥 𝑃 𝑥, 𝑐

1.4 𝑃(𝑎, 𝑐)
1.5 ∃𝑦 𝑃 𝑎, 𝑦
1.6 ∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

2. ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃(𝑥, 𝑦)]

Assumption

Elim ∃ (1.1)

Elim ∀ (1.2)

Intro ∃ (1.4)

Intro ∀ (1.5)

Direct Proof Rule

It is not required to have “variable is 

arbitrary” as a step before using it. 

But many people (including Robbie) 

find it helpful.



Find The Bug

1. ∀𝑥∃𝑦 Greater 𝑦, 𝑥

2. Let 𝑎 be an arbitrary integer

3. ∃𝑦 Greater(𝑦, 𝑎)

4. Greater(𝑏, 𝑎)

5. ∀𝑥 Greater(𝑏, 𝑥)

6. ∃𝑦∀𝑥 Greater(𝑦, 𝑥)

Given

--

Elim ∀ (1)

Elim ∃ (2)

Intro ∀ (4)

Intro ∃ (5) 

Let your domain of discourse be integers. 

We claim that given ∀𝑥∃𝑦 Greater 𝑦, 𝑥 , we can conclude ∃𝑦∀𝑥 Greater(𝑦, 𝑥)
Where Greater(𝑦, 𝑥) means 𝑦 > 𝑥



Find The Bug

1. ∀𝑥∃𝑦 Greater 𝑦, 𝑥

2. Let 𝑎 be an arbitrary integer

3. ∃𝑦 Greater(𝑦, 𝑎)

4. Greater(𝑏, 𝑎)

5. ∀𝑥 Greater(𝑏, 𝑥)

6. ∃𝑦∀𝑥 Greater(𝑦, 𝑥)

Given

--

Elim ∀ (1)

Elim ∃ (2)

Intro ∀ (4)

Intro ∃ (5) 

𝑏 is not a single number! The variable 𝑏 depends on 𝑎. You can’t get 

rid of 𝑎 while 𝑏 is still around.

What is 𝑏? It’s probably something like 𝑎 + 1. 



Bug Found

There’s one other “hidden” requirement to introduce ∀.

“No other variable in the statement can depend on the variable to be 
generalized”

Think of it like this -- 𝑏 was probably 𝑎 + 1 in that example.

You wouldn’t have generalized from Greater(𝑎 + 1, 𝑎)

To ∀𝑥 Greater(𝑎 + 1, 𝑥). There’s still an 𝑎, you’d have replaced all the 𝑎’s. 

𝑥 depends on 𝑦 if 𝑦 is in a statement when 𝑥 is introduced.

This issue is much clearer in English proofs, which we’ll start next time.



Number Theory



Why Number Theory?

Applicable in Computer Science

“hash functions” (you’ll see them in 332) commonly use modular arithmetic

Much of classical cryptography is based on prime numbers. 

More importantly, a great playground for writing English proofs. 



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.

Prime Numbers

Modular Arithmetic

Modular Multiplicative Inverse

Bezout’s Theorem

Extended Euclidian Algorithm



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.

Modular Exponentiation



Divides

“𝑥 is a divisor of 𝑦” or "𝑥 is a factor of 𝑦” means (essentially) the same 
thing as 𝑥 divides 𝑦. 
(“essentially” because of edge cases like when a number is negative or 𝑦 = 0)

“The small number goes first*” *when both are positive integers

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides



Divides

Which of these are true?

2|4 4|2 2| − 2

5|0 0|5 1|5

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides



Divides

Which of these are true?

2|4 4|2 2| − 2

5|0 0|5 1|5

For integers 𝑥, 𝑦 we say 𝒙|𝒚 (“𝒙 divides 𝒚”) iff

there is an integer 𝒛 such that 𝒙𝒛 = 𝒚.

Divides

True False

FalseTrue True

True



A useful theorem 

Remember when non integers were still secret, you did division like this?

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

𝑞 is the “quotient”

𝑟 is the “remainder”



Unique

“unique” means “only one”….but be careful with how this word is used.

𝑟 is unique, given 𝑎, 𝑑. – it still depends on 𝑎, 𝑑 but once you’ve chosen 
𝑎 and 𝑑

“unique” is not saying ∃𝑟∀𝑎, 𝑑 𝑃(𝑎, 𝑑, 𝑟)
It’s saying ∀𝑎, 𝑑∃𝑟[𝑃 𝑎, 𝑑, 𝑟 ∧ 𝑃 𝑎, 𝑑, 𝑥 → 𝑥 = 𝑟 ]

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem



A useful theorem 

The 𝑞 is the result of a/d (integer division) in Java

The 𝑟 is the result of a%d in Java

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑

Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

That’s slightly a lie, 𝑟 is always non-

negative, Java’s % operator sometimes 

gives a negative number.



Terminology

You might have called the % operator in Java “mod”

We’re going to use the word “mod” to mean a closely related, but 
different thing.

Java’s % is an operator (like + or ⋅) you give it two numbers, it produces 
a number. 

The word “mod” in this class, refers to a set of rules



Modular Arithmetic

“arithmetic mod 12” is familiar to you. You do it with clocks.

What’s 3 hours after 10 o’clock?

1 o’clock. You hit 12 and then “wrapped around”

“13 and 1 are the same, mod 12” “-11 and 1 are the same, mod 12”

We don’t just want to do math for clocks – what about if we need to talk 
about parity (even vs. odd) or ignore higher-order-bits (mod by 16, for 
example)



Modular Arithmetic

To say “the same” we don’t want to use = … that means the normal =

We’ll write 13 ≡ 1(mod 12)

≡ because “equivalent” is “like equal,” and the “modulus” we’re using in 
parentheses at the end so we don’t forget it. 
(we’ll also say “congruent mod 12”)

The notation here is bad. We all agree it’s bad. Most people still use it.

13 ≡12 1 would have been better. “mod 12” is giving you information 
about the ≡ symbol, it’s not operating on 1.



Modular Arithmetic

We need a definition! We can’t just say “it’s like a clock”

Pause what do you expect the definition to be?

Is it related to % ?



Modular Arithmetic

We need a definition! We can’t just say “it’s like a clock”

Pause what do you expect the definition to be?

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic

Huh?



Long Pause

It’s easy to read something with a bunch of symbols and say “yep, those 
are symbols.” and keep going

STOP Go Back. 

You have to fight the symbols they’re probably trying to pull a fast one 
on you. 

Same goes for when I’m presenting a proof – you shouldn’t just believe 
me – I’m wrong all the time!

You should be trying to do the proof with me. Where do you think we’re 
going next?



Why? 

Your Tas will take a bit of time in section on this.

Here’s the short version:

It really is equivalent to ”what we expected”
a%n=b%n if and only if 𝑛|(𝑏 − 𝑎)

The divides version is much easier to use in proofs…

27

15

27 − 15 = 12

When you subtract, 

the remainders cancel. 

What you’re left with 

is a multiple of 12.



Extra Practice



One more Proof

Show if we know: 𝑝, 𝑞, 𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠 , 𝑟 → 𝑡 we can conclude 𝑡.



One more Proof

Show if we know: 𝑝, 𝑞, 𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠 , 𝑟 → 𝑡 we can conclude 𝑡.

1. 𝑝
2. 𝑞
3. [ 𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠 ]
4. 𝑟 → 𝑡
5. 𝑝 ∧ 𝑞
6. 𝑟 ∧ 𝑠
7. 𝑟
8. 𝑡

Given

Given

Given

Given

Intro ∧ (1,2)

Modus Ponens (3,5)

Eliminate ∧ (6)

Modus Ponens (4,7)


