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Inference Rules
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AB |
ue ) ~4-B>

AV B,—A
[ Eliminate v ] [ Modus ] P-Q,P
! B Ponens
¢

A B
[ Intro A ] .
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~AVB,BVA



Given: ((p = g) A (g —
Ghren 2 P A a2

Here's a corrected version of the proof.

L (p->q@N(@q—>T) Given

When introducing an assumption

p > q Fliminate A 1 - to prO\(;e an implicaticgn:.
’_’ Eliminate A 1 ndent, and change numbering.
J. q =T
D Assumption
s Modus Porens 4.1,2 When reached your
q Modus Ponens 4.2 3 conclusion, use the Direct
r - Proof Rule to observe the
Do 1 Direct Proof Rule implication is a fact.

The conclusion is an unconditional fact (doesn't
depend on p) so it goes back up a level



Try 1t!

Given:p Vv q, (r AS) — aq, T
Show: s =
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You can still use all the
propositional logic
equivalences too!
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Try 1t!

Given:qu,fr/\S;e—.q, T T

Show: s = p M% —ld%

4|\i é § Given

/

(7” A S) — 2¢> Given

Assumption =~ —

Intro A (3,4.1) jy
Modus Ponens (7.
Commutativity (1)
Eliminate V(44,4

Direct Proof Rule

Given 5 D _\i‘/



Caution

Be careful! Logical inference rules can only be applied to_entire facts. They
cannot be applied to portions of a statement (our propositional
equivalences could apply to subexpressions). Why not for inference rules?

Suppose we know p = g, r. Can we conclude q?

@_q olven [ Intro v ]@

=, Given ~AVEBBVA
(pVT)—>q Introduce v (1)
pvr Introduce V (2)

q Modus Ponens 3,4,



I~ Inference Proofs in Predicate Logic
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Proofs with Quantifiers

We've done symbolic proofs with propositional logic.

To include predicate logic, we'll need some rules about how to use
quantifiers.

Vx P(x) P(c) for some ¢
[ Eliminate V ] [ Intro 3 ] )
* P(a) for any a s Jx P(x)
P(a); a is arbitrary 3AxP(x)
[ Intro v ] [ Eliminate 3 ]
° Vx P(x) .. P(c) for afresh ¢

Let's see a good example, then come back to those “arbitrary” and "“fresh”
conditions.



Proof Using Quantifiers

Suppose we know Eleéx),and/vMe Q(y)\]. Conclucfe@le(x). f

—— |\
Vx P(x) P(c) for some ¢
[ Eliminate V ] [ Intro 3 ] .
* P(a) for any a s Jx P(x)
P(a); a is arbitrary 3xP(x)
[ Intro V ] [ Eliminate 3 ]

Vx P(x) .. P(c) forafreshc



Proof Using Quantifiers

Suppose we know IxP(x) and Vy[ P(y) = Q(y)]. Conclude 3xQ(x).

I o - P(c) for some ¢
[ Intro 3 ]
* dx P(x)
dxP(x)
[ Eliminate 3 ]
~. P(c) forafresh c
Vx P(x)
[ Eliminate V ]
~ P(a) forany a
P(a); a is arbitrary
[ Intro V ]

Vx P(x)



Proof Using Quantifiers

Suppose we kno@ 3xP(x))and Yy[ P(y) = Q(y)]. Conclude EIxQ(x)

3xP (x) Given |E[ nto3 ) P(C) 3

7 Pt~ Eliminate 3 1 Nl . 3x Px)
Vy[P(y) » Q(y)] Given EIxP(x)

(a) - Q(a) Eliminate V 3 | Eliminate 3 |
%@ — Modus Ponens 2,4 ~ P(c) fO@J

dxQ(x) Intro 3 5 = ] Vx P(x)
——— Eliminate v
P(a) forany &

i P(a);a |
Intro Vv ] VxP(x)




Proofs with Quantifiers

We've done symbolic proofs with propositional logic.

To include predicate logic, we'll need some rules about how to use
quantifiers.

Vx P(x) P(c) for some ¢
[ Eliminate v ] [ Intro 3 ] )
~ P(a) for any a o Jx P(x)
P(a); a is arbitrary 3xP(x)
[ Intro v ] [ Eliminate 3 ]
: Vx P(x) .. P(c) forafreshc

“arbitrary” means a is “just” a variable in our domain.
It doesn’t depend on any other variables and wasn't introduced

with other information.




Proofs with Quantifiers

We've done symbolic proofs with propositional logic.

To include predicate logic, we'll need some rules about how to use
quantifiers.

Vx P(x) P(c) for some ¢
[ Eliminate v ] [ Intro 3 ] )
~ P(a) for any a o Jx P(x)
P(a); a is arbitrary AxP (x)
[ Intro v ] [ Eliminate 3 ]
. Vx P(x) .. P(c) for afresh ¢

“fresh” means c is a new symbol (there isn't another ¢

somewhere else in our proof).




Fresh and Arbitrary

Suppose we know JxP(x). Can we conclude VxP(x)?

P(c) for some c

Jx P(x) Given [ Intro 3 ]
* dx P(x)
P(a) Eliminate 3 (1)
dxP(x)
Vx P(x) IntroV (2) | Eliminate 3 | —
. P(c) forafresh c
. . . . m
This proof is definitely wrong. Vx P(x)
(take P(x) to be “is a prime number”) | Eliminate v |

~ P(a) for any a
a wasn't arbitrary. We knew something about

it — it's the x that exists to make P(x) true. P(a); ais arbitrary

[ Intro v ] .

Vx P(x)



Fresh and Arbitrary

P(a); a is arbitrary AxP (x)

[ Eliminate 3 ]
Vx P(x) ~. P(c) for afresh c

[ Intro v ] )

You can trust a variable to be arbitrary if you introduce it as such.

If you eliminated a V to create a variable, that variable is arbitrary.
Otherwise it's not arbitrary — it depends on something.

You can trust a variable to be fresh if the variable doesn't appear
anywhere else (i.e. just use a new letter)



Fresh and Arbitrary

Vx P(x) P(c) for some c

TS Intro 3
[ Eliminate V ] - P(a) for any a [ ] s dx P(x)

There are no similar concerns with these two rules.

Want to reuse a variable when you eliminate ¥? Go ahead.

Have a c¢ that depends on many other variables, and want to intro 37
Also not a problem.



Arbitrary
K—/ﬂ

/—__\/—\
|3yVx P(x,y)] = [Vx3y P(x,y)]. Let's prove it!!
— ., k_/_ ~

In section, you said:




Arbitrary

In section, you said: [EIny P(x,y)] - [‘v’xEIy P(x,y)]. Let's prove it!!

113yvx P(x,y) Assumption b&
—.2 Vx ; Elim 3 (1.1)

1.3 Let a be arbitrary. -- <

1.4 P(a,C) Elim v (1.2)

15 EIyTJ(a y) Intro 3 (1.4)

1.6 Vx3 'xEIy P(x,y) Intro v (1.5)

— [Vx3y P(x,y)] Direct Proof Rule

\ - \ /




Arbitrary

In section, you said: [3yVx P(x,y)] = [Vx3y P(x,y)]. Let’s prove it!!

1.13yvx P(x,y) Assumption
1.2 Vx P(x, c¢) Elim 3 (1.7)
It is not required to have “variable is
14 p(a’ C) Elim V (1.2) arbitrary” as a step before using it.
. But many people (including Robbie
15 3y P(a,y) ntro 3 (1.4) e PeoP lincluding |
b Vx3ay P(x,y) Intro v (1.5)

2. [3yvx P(x,y)] —» [Vx3y P(x,y)] Direct Proof Rule



o h Let your domain of discourse be integers.
F I n d T e B u g We claim that given Vx3y Greater(y, x), we can conclude 3yVx Greater(y, x)
Where Greater(y,x) mean

Vx3y Greater(y,x) Given ;
Let a be an arbitrary integer --
Jy (ireat_er(y, asj Elim Vv (1)
%reater(b, D Eim3 @) [ \j
é Vx Greater(b,x) Intro Vv (4)>%
dyvx Greaterm Intro 3 (5)



Find The Bug

Vx3y Greater(y, x) Given

Let a be an arbitrary integer --

dy Greater(y,a) Elim Vv (1)
Greater(b,a) Elim 3 (2)
Vx Greater(b,x) Intro v (4)
yVx Greater(y, x) Intro 3 (5)

b is not a single number! The variable b depends on a. You can't get
rid of a while b is still around.

What is b? It's probably something like a + 1.



Bug Found

There's one other "hidden” requirement to introduce V.

“No other variable in the statement can depend on the variable to be
generalized”

Think of it like this -- b was probably a + 1 in that example.

You wouldn't have generalized from Greater(a + 1, a)

To Vx Greater(a + 1,x). There's still an a, you'd have replaced all the a’s.
x depends on y if y is in a statement when x is introduced.

This issue is much clearer in English proofs, which we'll start next time.



‘ Number Theory
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Why Number Theory?

{ Applicable in Computer Science

"hash functions” @e them@commonly use modular arithmetic
/ Much of classical cryptography is based on prime numbe@

More importantly, a great playground for writing English proofs]



Framing Device

We're going to give you enough background to (mostly) understand the
A\ encryption 5ybt€ﬁ5

Key generation [edit]

The keys for the RSA algorithm are generated in the following way:

1. Choose two distinct prime numbers p and gq.
e For security purposes, the integers p and g should be chosen at random and should be similar in magnitude but differ in length by a few digits to make factoring harder.[2! Prime integers can be efficiently found using a primality
test.
¢ p and g are kept secret.
2. Compute n = pg.
¢ nis used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
¢ nis released as part of the public key.
3. Compute A(n), where A is Carmichael's totient function. Since n = pg, A(n) = lem(A(p), A(g)), and since p and g are prime, A(p) = @(p) = p — 1, and likewise A(g) = g — 1. Hence A(n) = lem(p -1, g — 1).
¢ A(n) is kept secret.
¢ The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) = |ab|/gcd(a, b).
4. Choose an integer e such that 1 < e < A(n) and gcd(e, A(n)) = 1; that is, e and A(n) are coprime.
¢ e having a short bit-length and small Hamming weight results in more efficient encryption — the most commonly chosen value for e is 276 4+ 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value
for e has been shown to be less secure in some settings.[19)
¢ ¢ is released as part of the public key.
5. Determine d as d = e”' (mod A(n)); that is, d is the modular multiplicative inverse of e modulo A(n).
¢ This means: solve for d the equation d-e = 1 (mod A(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and A(n) being coprime, said equation is a form of Bézout's identity, where d is
one of the coefficients.
e d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryption) exponent d, which must be kept secret. p, g, and A(n) must also be kept secret because they can be

used to calculate d. In fact, they can all be discarded after d has been computed.[m]



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Key generation | edit] Prime Numbers

The keys for the RSA algorithm are genera

1. Choose two distinct prime numbers p and gq.

e For security purposes, the integers p and g should be chosen at random and should be similar in magnitude but differ in length by a few digits to make factoring harder.[2! Prime integers can be efficiently found using a primality
test.

* pand g are kept secret. Modular Arithmetic
2. Compute n = pg.

¢ nis used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
¢ nis released as part of the public key.
3. Compute A(n), where A is Carmichael's totient function. Since n = pg, A(n) = lem(A(p), A(g)), and since p and g are prime, A(p) = @(p) = p — 1, and likewise A(q) = g — 1. Hence A(n) =lem(p -1, g — 1).

¢ A(n) is kept secret.

e The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) MOdUIG r MUI“ pllcq“‘/e Inve rse

4. Choose an integer e such that 1 < e < A(n) and gcd(e, A(n)) = 1; that is, e and A(

¢ e having a short bit-length and small Hamming weight results in more efficient eng e most commonly chosen value for e is 216 + 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value

for e has been shown to be less secure in some settings.['?!
e ¢ is released as part of the public key. BeZOUt’S Theorem
5. Determine d as d = " (mod A(n)); that is, d is the modular multiplicative inverse of @ modulo A(n).
¢ This means: solve for d the equation d-e = 1 (mod A(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and A(n) being coprime, said equation is a form of Bézout's identity, where d is
one of the coefficients.

e d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryp EXfend ed EUCIid iCI n Algorifhm also be kept secret because they can be

used to calculate d. In fact, they can all be discarded after d has been computed.[m]



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Encryption [edit]
After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that 0 < m < » by using an agreed-upon reversible protocol known as a padding scheme. He then

computes the ciphertext ¢, using Alice's public key e, corresponding to
ce=m° (mod n).
This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a ciphertext ¢ equal to m,[22] but this is very unlikely to occur in

practice.

Decryption [edit]
Alice can recover n1 from ¢ by using her private key exponent d by computing
¢t =(m%)*=m (mod n).

Given m1, she can recover the original message M by reversing the padding scheme.



Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Encryption [edit]
After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that 0 < m < » by using an agreed-upon reversible protocol known as a padding scheme. He then

computes the ciphertext ¢, using Alice's public key e, corresponding to
c=m® (mod n).
This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a ciphertext ¢ equal to m,[22] but this is very unlikely to occur in

practice.

Decryption [edit] Modular Exponentiation

Alice can recover n1 from ¢ by using her private key exponent d by computing
¢t =(m%)*=m (mod n).

Given 1, she can recover the original message M by reversing the padding scheme.



Divides @(( U,

‘ Divides

For integers x,y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

"x is a divisor of y" or "x is a factor of y" means (essentially) the same
thing as x divides y.
(“essentially” because of edge cases like when a number is negative or y = 0)

“The small number goes first*” *when both are positive integers



Divides

Divides

For integers x,y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

Which of these are true?
2|4 4|2 2| — 2

50 0|5 115



Divides

Divides

For integers x,y we say x|y (“x divides y") iff
there is an integer z such that xz = y.

Which of these are true?

2|4 True 4|2 False 2| —2 True

5|0 True 0|5 False 1|5 True



A useful theorem

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

Remember when non integers were still secret, you did division like this?

q is the "quotient”
r is the “remainder”



Unique

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

“unique” means “only one”....but be careful with how this word is used.

r IS unique, given a, d. — it still depends on a, d but once you've chosen
a and d

‘unique” is not saying Irva,d P(a,d,r)
It's saying Va,d3r[P(a,d,r) A|P(a,d,x) = x =r]]



A useful theorem

The Division Theorem
Foreverya €Z,d € Z withd > 0

There exist unique integers q,r with 0 <r <d
Suchthata =dqg +r

The q is the result of a/d (integer division) in Java
The r is the result of a%d in Java

That's slightly a lie, r is always non-
negative, Java's % operator sometimes
gives a negative number.




Terminology

You might have called the % operator in Java “mod”

We're going to use the word "mod” to mean a closely related, but
different thing.

Java's % is an operator (like + or -) you give it two numbers, it produces
a number.

The word “mod” in this class, refers to a set of rules



Modular Arithmetic

"arithmetic mod 12" is familiar to you. You do it with clocks.

What's 3 hours after 10 o'’clock?
1 o'clock. You hit 12 and then “wrapped around”

“13 and 1 are the same, mod 12" “-11 and 1 are the same, mod 12"

We don't just want to do math for clocks — what about if we need to talk
about parity (even vs. odd) or ignore higher-order-bits (mod by 16, for
example)



Modular Arithmetic

To say “the same” we don’t want to use = ... that means the normal =

We'll write 13 = 1(mod 12)

= because "equivalent” is “like equal,” and the “modulus” we're using in
parentheses at the end so we don't forget it.
(we'll also say “congruent mod 12")

The notation here is bad. We all agree it's bad. Most people still use it.

13 =;, 1 would have been better. “mod 12" is giving you information
about the = symbol, it's not operating on 1.



Modular Arithmetic

We need a definition! We can't just say “it’s like a clock”

Pause what do you expect the definition to be?
s it related to % ?



Modular Arithmetic

We need a definition! We can't just say “it's like a clock”

Pause what do you expect the definition to be?

Equivalence in modular arithmetic
leta €Z,b €Z,n€Zandn > 0.

We say a = b (mod n) if and only if n|(b — a)

Huh?



Long Pause

It's easy to read something with a bunch of symbols and say “yep, those
are symbols." and keep going

STOP Go Back.

You have to fight the symbols they're probably trying to pull a fast one
on you.

Same goes for when I'm presenting a proof — you shouldn't just believe
me — I'm wrong all the time!

You should be trying to do the proof with me. Where do you think we're
going next?



Why?

Your Tas will take a bit of time in section on this.
Here's the short version:

It reaIIy IS equivalent to "what we expected”
asn=bs%n if and only if n|(b — a)

When you subtract,
20008 0E8ES o

the remainders cancel.

What you're left with
GO TTTTITITTITT T T 1 B Makatae

is @ multiple of 12.
27-15=12 @ESEopEEEEEE

The divides version is much easier to use in proofs...



‘ Extra Practice



One more Proof

Show if we know: p,q,[(p Aq) = (r As)],r = t we can conclude t.



One more Proof

Show if we know: p,q,[(p Aq) = (r As)],r = t we can conclude t.

p Given

q Given

[WbAq) » (rAs)] Given

rot Given

pAq Intro A (1,2)

rAS Modus Ponens (3,5)
r Eliminate A (6)

t Modus Ponens (4,7)



