
Inference Proof CSE 311 Fall 24

Lecture 8

A Brief Return to Training Wheels

For about 1.5 lectures, we’re going to study “inference proofs”

The rules for these proofs are

1. Strict enough that computers can check them (there are languages
designed to do that!)

2. More general than the simplification rules we’ve seen so far.
You’ll still use the simplification rules!

But you’ll find we can prove more things (at least without significant difficulty).

3. More similar to the proofs we spend most of the quarter writing.

https://en.wikipedia.org/wiki/Lean_(proof_assistant)

A Brief Return to Training Wheels

The claims and proofs are quite abstract!

Why spend time here?

Some computer scientists use the fully formal (computer-checkable)
version of the rules.
Our PL group here contains experts in these topics!

We want your takeaways to be
In principle, any proof we write in this class could be made fully formal and
checked.

But it can be a lot of work, so we usually think and communicate in English. We’re
people after all!

Inference Proofs

A new way of thinking of proofs:

Here’s one way to get an iron-clad guarantee:

1. Write down all the facts we know.

2. Combine the things we know to derive new facts.

3. Continue until what we want to show is a fact.

Drawing Conclusions

You know “If it is raining, then I have my umbrella”

And “It is raining”

You should conclude….

For whatever you conclude, convert the statement to propositional logic
– will your statement hold for any propositions, or is it specific to raining
and umbrellas?

I have my umbrella!

I know (𝑝 → 𝑞) and 𝑝, I can conclude 𝑞
Or said another way: 𝑝 → 𝑞 ∧ 𝑝 → 𝑞

Modus Ponens

The inference from the last slide is always valid. I.e.
𝑝 → 𝑞 ∧ 𝑝 → 𝑞

Has only True rows in its truth table (it’s a tautology)

Modus Ponens – a formal proof

𝑝 → 𝑞 ∧ 𝑝 → 𝑞 ≡ [¬𝑝 ∨ 𝑞 ∧ 𝑝] → 𝑞
≡ 𝑝 ∧ ¬𝑝 ∨ 𝑞 → 𝑞
≡ 𝑝 ∧ ¬𝑝 ∨ 𝑝 ∧ 𝑞 → 𝑞
≡ F ∨ 𝑝 ∧ 𝑞 → 𝑞
≡ 𝑝 ∧ 𝑞 ∨ F → 𝑞
≡ 𝑝 ∧ 𝑞 → 𝑞
≡ ¬ 𝑝 ∧ 𝑞 ∨ 𝑞
≡ ¬𝑝 ∨ ¬𝑞 ∨ 𝑞
≡ ¬𝑝 ∨ [¬𝑞 ∨ 𝑞]
≡ ¬𝑝 ∨ [𝑞 ∨ ¬𝑞]
≡ ¬𝑝 ∨ T
≡ T

Law of Implication

Commutativity

Distributivity

Negation

Commutativity

Identity

Law of Implication

DeMorgan’s Law

Associativity

Commutativity

Negation

Domination

Modus Ponens

The inference from the last slide is always valid. I.e.
𝑝 → 𝑞 ∧ 𝑝 → 𝑞 ≡ T

We use that inference A LOT

So often people gave it a name (“Modus Ponens”)

So often…we don’t have time to repeat that 12 line proof EVERY TIME.

Let’s make this another law we can apply in a single step.

Just like refactoring a method in code.

Notation – Laws of Inference

We’re using the “→ “ symbol A LOT.

Too much

Some new notation to make our lives easier.

If we know both 𝐴 and 𝐵

We can conclude any (or all) of 𝐶, 𝐷∴

𝐴, 𝐵

𝐶, 𝐷∴

“∴” means “therefore” – I knew 𝐴, 𝐵 therefore I can conclude 𝐶, 𝐷.

𝑝 → 𝑞, 𝑝

𝑞∴
Modus Ponens, i.e. 𝑝 → 𝑞 ∧ 𝑝 → 𝑞),

in our new notation.

Another Proof

Let’s keep going.

I know “If it is raining then I have my umbrella” and “I do not have my
umbrella”

I can conclude…

What’s the general form?

How do you think the proof will go?
If you had to convince a friend of this claim in English, how would you do it?

It is not raining!

[(𝑝 → 𝑞) ∧ ¬𝑞] → ¬𝑝

A proof!

We know 𝑝 → 𝑞 and ¬𝑞; we want to conclude ¬𝑝.
Let’s try to prove it. Our goal is to list facts until our goal becomes a

fact.

We’ll number our facts, and put a justification for each new one.

A proof!

1. 𝑝 → 𝑞

2. ¬𝑞

3. ¬𝑞 → ¬𝑝

4. ¬𝑝

Given

Given

Contrapositive of 1.

Modus Ponens on 3,2.

We know 𝑝 → 𝑞 and ¬𝑞; we want to conclude ¬𝑝.
Let’s try to prove it. Our goal is to list facts until our goal becomes a

fact.

We’ll number our facts, and put a justification for each new one.

Try it yourselves

Suppose you know 𝑝 → 𝑞,¬𝑠 → ¬𝑞,and 𝑝.
Give an argument to conclude 𝑠.

Pollev.com/robbie

Help me adjust my explanation!

Try it yourselves

Suppose you know 𝑝 → 𝑞,¬𝑠 → ¬𝑞,and 𝑝.
Give an argument to conclude 𝑠.

1. 𝑝 → 𝑞
2. ¬𝑠 → ¬𝑞
3. 𝑝
4. 𝑞
5. 𝑞 → 𝑠
6. 𝑠

Given

Given

Given

Modus Ponens 1,3

Contrapositive of 2

Modus Ponens 5,4

That was abstract!

Imagine that instead someone had said:

If next is null, then we go down the else-branch

If the input list is non-empty, then we don’t go down the else-branch.

This test uses a non-empty list as input.

Can you conclude anything?

So…why do the abstract proof?

Mostly to practice…

Though sometimes it’s helpful to make things abstract.

The more general you make a claim…
The more abstract it is, and therefore more difficult to understand on the surface…

But the more different contexts it can be used in.

More Inference Rules

We need a couple more inference rules.

These rules set us up to get facts in exactly the right form to apply the
really useful rules.

A lot like commutativity and associativity in the propositional logic rules.

𝐴 ∧ 𝐵

𝐴, 𝐵∴
Eliminate ∧

I know the fact 𝐴 ∧ 𝐵

I can conclude 𝐴 is a fact and 𝐵 is a fact separately.∴

More Inference Rules

In total, we have two for ∧ and two for ∨, one to create the connector,
and one to remove it.

None of these rules are surprising, but they are useful.

𝐴 ∧ 𝐵

𝐴, 𝐵∴
Eliminate ∧

𝐴 ∨ 𝐵,¬𝐴

𝐵∴
Eliminate ∨

𝐴, 𝐵

𝐴 ∧ 𝐵∴
Intro ∧

𝐴

𝐴 ∨ 𝐵, 𝐵 ∨ 𝐴∴
Intro ∨

Direct Proof Rule

The Direct Proof Rule

We’ve been implicitly using another “rule” in our English proofs, the direct
proof rule

Write a proof “given 𝐴 conclude 𝐵” 𝐴 ⇒ 𝐵

𝐴 → 𝐵𝐴 → 𝐵

Direct Proof

rule

This rule is different from the others – 𝐴 ⇒ 𝐵 is not a “single fact.”

It’s an observation that we’ve done a proof. (i.e. that we showed fact 𝐵 starting

from 𝐴.)

We will get a lot of mileage out of this rule.

Inference Rules

𝐴 ∧ 𝐵

𝐴, 𝐵∴
Eliminate ∧

𝐴 ∨ 𝐵,¬𝐴

𝐵∴
Eliminate ∨

𝐴, 𝐵

𝐴 ∧ 𝐵∴
Intro ∧

𝐴

𝐴 ∨ 𝐵, 𝐵 ∨ 𝐴∴
Intro ∨

𝐴 ⇒ 𝐵

𝐴 → 𝐵

Direct Proof

rule

𝑃 → 𝑄,𝑃

𝑄∴

Modus

Ponens

You can still use all the

propositional logic

equivalences too!

The Direct Proof Rule

We’ve been implicitly using another “rule” today, the direct proof rule

Write a proof “given 𝐴 conclude 𝐵” 𝐴 ⇒ 𝐵

𝐴 → 𝐵𝐴 → 𝐵

Direct Proof

rule

This rule is different from the others – 𝐴 ⇒ 𝐵 is not a “single fact.”

It’s an observation that we’ve done a proof. (i.e. that we showed fact 𝐵 starting

from 𝐴.)

We will get a lot of mileage out of this rule…starting right now.

How would you argue…

Let’s say you have a piece of code.

And you think if the code gets null input then a nullPointerExecption will
be thrown.

How would you convince your friend?

You’d probably trace the code, assuming you would get null input.

The code was your given

The null input is an assumption

In general

How do you convince someone that 𝑝 → 𝑞 is true given some
surrounding context/some surrounding givens?

You suppose 𝑝 is true (you assume 𝑝)

And then you’ll show 𝑞 must also be true.
Just from 𝑝 and the Given information.

The Direct Proof Rule

Write a proof “assume 𝐴 conclude 𝐵” 𝐴 ⇒ 𝐵

𝐴 → 𝐵𝐴 → 𝐵

Direct Proof

rule

This rule is different from the others – 𝐴 ⇒ 𝐵 is not a “single fact.”

It’s an observation that we’ve done a proof. (i.e. that we showed fact 𝐵 starting

from 𝐴.)

We will get a lot of mileage out of this rule…starting today!

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ (1)

Eliminate ∧ (1)

Given???

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule

Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ 1

Eliminate ∧ (1)

Given ????

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule

Proofs are supposed to be lists of facts.

Some of these “facts” aren’t really facts…

These facts depend on 𝑝.

But 𝑝 isn’t known generally.

It was assumed for the

purpose of proving 𝑝 → 𝑟.

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Here’s an incorrect proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟

4. 𝑝

5. 𝑞

6. 𝑟

7. 𝑝 → 𝑟

Given

Eliminate ∧ 1

Eliminate ∧ (1)

Given ????

Modus Ponens 4,2

Modus Ponens 5,3

Direct Proof Rule

Proofs are supposed to be lists of facts.

Some of these “facts” aren’t really facts…

These facts depend on 𝑝.

But 𝑝 isn’t known generally.

It was assumed for the

purpose of proving 𝑝 → 𝑟.

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Here’s a corrected version of the proof.

1. 𝑝 → 𝑞 ∧ 𝑞 → 𝑟

2. 𝑝 → 𝑞

3. 𝑞 → 𝑟
4.1 𝑝

4.2 𝑞

4.3 𝑟

5. 𝑝 → 𝑟

Given

Eliminate ∧ 1
Eliminate ∧ 1

Assumption
Modus Ponens 4.1,2
Modus Ponens 4.2,3

Direct Proof Rule

When introducing an assumption

to prove an implication:

Indent, and change numbering.

When reached your

conclusion, use the Direct

Proof Rule to observe the

implication is a fact.

The conclusion is an unconditional fact (doesn’t

depend on 𝑝) so it goes back up a level

Given: ((𝑝 → 𝑞) ∧ (𝑞 → 𝑟))
Show: (𝑝 → 𝑟)

Try it!

Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟.
Show: 𝑠 → 𝑝

Try it!

Given: 𝑝 ∨ 𝑞, 𝑟 ∧ 𝑠 → ¬𝑞, 𝑟.
Show: 𝑠 → 𝑝

1. 𝑝 ∨ 𝑞
2. 𝑟 ∧ 𝑠 → ¬𝑞
3. 𝑟

4.1 𝑠
4.2 𝑟 ∧ 𝑠
4.3 ¬𝑞
4.4 𝑞 ∨ 𝑝
4.5 𝑝

5. 𝑠 → 𝑝

Given

Given

Given

Assumption

Intro ∧ (3,4.1)

Modus Ponens (2, 4.2)

Commutativity (1)

Eliminate ∨ (4.4, 4.3)

Direct Proof Rule

Caution

Be careful! Logical inference rules can only be applied to entire facts. They
cannot be applied to portions of a statement (our propositional
equivalences could apply to subexpressions). Why not for inference rules?

Suppose we know 𝑝 → 𝑞, 𝑟. Can we conclude 𝑞?

1. 𝑝 → 𝑞

2. 𝑟

3. 𝑝 ∨ 𝑟 → 𝑞

4. 𝑝 ∨ 𝑟

5. 𝑞

Given

Given

Introduce ∨ (1)

Introduce ∨ (2)

Modus Ponens 3,4.

𝐴

𝐴 ∨ 𝐵, 𝐵 ∨ 𝐴∴
Intro ∨

Inference Proofs in Predicate Logic

Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic.

To include predicate logic, we’ll need some rules about how to use
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Let’s see a good example, then come back to those “arbitrary” and “fresh”
conditions.

Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[𝑃 𝑦 → 𝑄 𝑦]. Conclude ∃𝑥𝑄(𝑥).

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[𝑃 𝑦 → 𝑄 𝑦]. Conclude ∃𝑥𝑄(𝑥).

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Proof Using Quantifiers

Suppose we know ∃𝑥𝑃(𝑥) and ∀𝑦[𝑃 𝑦 → 𝑄 𝑦]. Conclude ∃𝑥𝑄(𝑥).

1. ∃𝑥𝑃(𝑥)
2. 𝑃(𝑎)
3. ∀𝑦[𝑃 𝑦 → 𝑄 𝑦]
4. 𝑃 𝑎 → 𝑄(𝑎)
5. 𝑄(𝑎)
6. ∃𝑥𝑄(𝑥)

Given

Eliminate ∃ 1

Given

Eliminate ∀ 3

Modus Ponens 2,4

Intro ∃ 5 ∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic.

To include predicate logic, we’ll need some rules about how to use
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

“arbitrary” means 𝑎 is “just” a variable in our domain.

It doesn’t depend on any other variables and wasn’t introduced

with other information.

Proofs with Quantifiers

We’ve done symbolic proofs with propositional logic.

To include predicate logic, we’ll need some rules about how to use
quantifiers.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

“fresh” means 𝑐 is a new symbol (there isn’t another 𝑐
somewhere else in our proof).

Fresh and Arbitrary

1. ∃𝑥 𝑃 𝑥

2. 𝑃(𝑎)

3. ∀𝑥 𝑃(𝑥)

Given

Eliminate ∃ (1)

Intro ∀ (2)

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

This proof is definitely wrong.

(take 𝑃(𝑥) to be “is a prime number”)

Suppose we know ∃𝑥𝑃 𝑥 . Can we conclude ∀𝑥𝑃 𝑥 ?

𝑎 wasn’t arbitrary. We knew something about

it – it’s the 𝑥 that exists to make 𝑃 𝑥 true.

Fresh and Arbitrary

You can trust a variable to be arbitrary if you introduce it as such.

If you eliminated a ∀ to create a variable, that variable is arbitrary.
Otherwise it’s not arbitrary – it depends on something.

You can trust a variable to be fresh if the variable doesn’t appear
anywhere else (i.e. just use a new letter)

𝑃 𝑎 ; 𝑎 is arbitrary

∀𝑥 𝑃(𝑥)∴
Intro ∀

∃𝑥𝑃(𝑥)

𝑃(𝑐) for a fresh 𝑐∴
Eliminate ∃

Fresh and Arbitrary

There are no similar concerns with these two rules.

Want to reuse a variable when you eliminate ∀? Go ahead.

Have a 𝑐 that depends on many other variables, and want to intro ∃?

Also not a problem.

∀𝑥 𝑃(𝑥)

𝑃 𝑎 for any 𝑎∴
Eliminate ∀

𝑃(𝑐) for some 𝑐

∃𝑥 𝑃(𝑥)∴
Intro ∃

Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦]. Let’s prove it!!

Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦]. Let’s prove it!!

1.1 ∃𝑦∀𝑥 𝑃 𝑥, 𝑦
1.2 ∀𝑥 𝑃 𝑥, 𝑐
1.3 Let 𝑎 be arbitrary.

1.4 𝑃(𝑎, 𝑐)
1.5 ∃𝑦 𝑃 𝑎, 𝑦
1.6 ∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

2. ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃(𝑥, 𝑦)]

Assumption

Elim ∃ (1.1)

--

Elim ∀ (1.2)

Intro ∃ (1.4)

Intro ∀ (1.5)

Direct Proof Rule

Arbitrary

In section, you said: ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃 𝑥, 𝑦]. Let’s prove it!!

1.1 ∃𝑦∀𝑥 𝑃 𝑥, 𝑦
1.2 ∀𝑥 𝑃 𝑥, 𝑐

1.4 𝑃(𝑎, 𝑐)
1.5 ∃𝑦 𝑃 𝑎, 𝑦
1.6 ∀𝑥∃𝑦 𝑃(𝑥, 𝑦)

2. ∃𝑦∀𝑥 𝑃 𝑥, 𝑦 → [∀𝑥∃𝑦 𝑃(𝑥, 𝑦)]

Assumption

Elim ∃ (1.1)

Elim ∀ (1.2)

Intro ∃ (1.4)

Intro ∀ (1.5)

Direct Proof Rule

It is not required to have “variable is

arbitrary” as a step before using it.

But many people (including Robbie)

find it helpful.

Find The Bug

1. ∀𝑥∃𝑦 Greater 𝑦, 𝑥

2. Let 𝑎 be an arbitrary integer

3. ∃𝑦 Greater(𝑦, 𝑎)

4. Greater(𝑏, 𝑎)

5. ∀𝑥 Greater(𝑏, 𝑥)

6. ∃𝑦∀𝑥 Greater(𝑦, 𝑥)

Given

--

Elim ∀ (1)

Elim ∃ (2)

Intro ∀ (4)

Intro ∃ (5)

Let your domain of discourse be integers.

We claim that given ∀𝑥∃𝑦 Greater 𝑦, 𝑥 , we can conclude ∃𝑦∀𝑥 Greater(𝑦, 𝑥)
Where Greater(𝑦, 𝑥) means 𝑦 > 𝑥

Find The Bug

1. ∀𝑥∃𝑦 Greater 𝑦, 𝑥

2. Let 𝑎 be an arbitrary integer

3. ∃𝑦 Greater(𝑦, 𝑎)

4. Greater(𝑏, 𝑎)

5. ∀𝑥 Greater(𝑏, 𝑥)

6. ∃𝑦∀𝑥 Greater(𝑦, 𝑥)

Given

--

Elim ∀ (1)

Elim ∃ (2)

Intro ∀ (4)

Intro ∃ (5)

𝑏 is not a single number! The variable 𝑏 depends on 𝑎. You can’t get

rid of 𝑎 while 𝑏 is still around.

What is 𝑏? It’s probably something like 𝑎 + 1.

Bug Found

There’s one other “hidden” requirement to introduce ∀.

“No other variable in the statement can depend on the variable to be
generalized”

Think of it like this -- 𝑏 was probably 𝑎 + 1 in that example.

You wouldn’t have generalized from Greater(𝑎 + 1, 𝑎)

To ∀𝑥 Greater(𝑎 + 1, 𝑥). There’s still an 𝑎, you’d have replaced all the 𝑎’s.

𝑥 depends on 𝑦 if 𝑦 is in a statement when 𝑥 is introduced.

This issue is much clearer in English proofs, which we’ll start next time.

Extra Practice

One more Proof

Show if we know: 𝑝, 𝑞, 𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠 , 𝑟 → 𝑡 we can conclude 𝑡.

One more Proof

Show if we know: 𝑝, 𝑞, 𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠 , 𝑟 → 𝑡 we can conclude 𝑡.

1. 𝑝
2. 𝑞
3. [𝑝 ∧ 𝑞 → 𝑟 ∧ 𝑠]
4. 𝑟 → 𝑡
5. 𝑝 ∧ 𝑞
6. 𝑟 ∧ 𝑠
7. 𝑟
8. 𝑡

Given

Given

Given

Given

Intro ∧ (1,2)

Modus Ponens (3,5)

Eliminate ∧ (6)

Modus Ponens (4,7)

