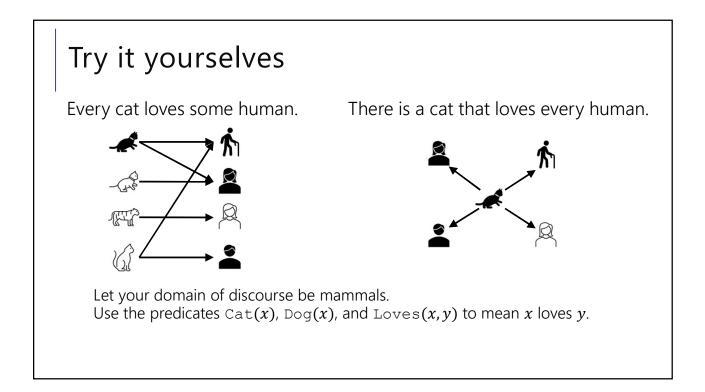
Nested Quantifiers

 $\forall x \exists y P(x, y)$

"For every x there exists a y such that P(x, y) is true." y might change depending on the x (people have different friends!).

 $\exists x \forall y P(x, y)$ "There is an x such that for all y, P(x, y) is true." There's a special, magical x value so that P(x, y) is true regardless of y.



Our First Direct Proof

 $\frac{\text{Definitions}}{\text{Even}(x)} = \exists k(x = 2k)$

Prove: "For all integers x, if x is even, then x^2 is even." $\forall x (\text{Even}(x) \rightarrow \text{Even}(x^2))$

Integer

We need a basic starting point to be able to prove things. Objects to work with.

An <u>integer</u>: is any real number with no fractional part.

Some **definitions** to analyze

Even	Odd
Even (x) := An integer, x , is even	Odd (\mathbf{x}) := An integer, x , is odd
if and only if there is an integer	if and only if there is an integer
k such that $x = 2k$.	k such that $x = 2k + 1$.