| 1. The statement is true for every $x$ , we just want to put a name on it.                                               |
|--------------------------------------------------------------------------------------------------------------------------|
| $\forall x \ (p(x) \land q(x))$ means "for every x in our domain, $p(x)$ and $q(x)$ both evaluate to true."              |
| Universal Quantifier                                                                                                     |
| "∀ <i>x</i> "                                                                                                            |
| "for each x", "for every x", "for all x" are common translations<br>Remember: upside-down-A for All.                     |
| 2. There's some $x$ out there that works, (but I might not know which it is, so I'm using a variable).                   |
| $\exists x(p(x) \land q(x))$ means "there is an x in our domain, $p(x)$ and $q(x)$ are both true.                        |
| Existential Quantifier                                                                                                   |
| "∃ <i>x</i> "                                                                                                            |
| "there is an $x$ ", "there exists an $x$ ", "for some $x$ " are common translations<br>Remember: backwards-E for Exists. |

## QuantifiersWriting implications can be tricky when we change the domain of<br/>discourse.For every cat: if the cat is fat, then it is happy.Domain of Discourse: cats $\forall x[Fat(x) \rightarrow Happy(x)]$ What if we change our domain of discourse to be all mammals?<br/>We need to limit x to be a cat. How do we do that? $\forall x[(Cat(x) \land Fat(x)) \rightarrow Happy(x)]$ $\forall x[Cat(x) \land (Fat(x) \rightarrow Happy(x))]$



