
Predicates and 
Quantifiers

CSE 311 Autumn 24

Lecture 5



Meet Boolean Algebra

Name Variables “True/False” “And” “Or” “Not” Implication

Java Code boolean b true,false && || ! No special 

symbol

Propositional 

Logic

"𝑝, 𝑞, 𝑟" T, F ∧ ∨ ¬ →

Circuits Wires 1, 0 No special 

symbol

Boolean 

Algebra

𝑎, 𝑏, 𝑐 1,0 ⋅
(“multiplication”)

+
(“addition”)

′
(apostrophe 

after variable) 

No special 

symbol

𝑝 ∧ 𝑞 ∧ 𝑟 ∨ 𝑠 ∨ ¬𝑡 𝑝𝑞𝑟 + 𝑠 + 𝑡′

Propositional logic Boolean Algebra



Predicates!



Predicate Logic

So far our propositions have worked great for fixed objects.

What if we want to say “If 𝑥 > 10 then 𝑥2 > 100.”

𝑥 > 10 isn’t a proposition. Its truth value depends on 𝑥. 

We need a function that can take in a value for 𝑥 and output True or 
False as appropriate.



Predicates

Cat(x):= “x is a cat”

Prime(x) := “x is prime”

LessThan(x,y):= “x<y”

Sum(x,y,z):= “x+y=z”

HasNChars(s,n):= “string s has length n”

Numbers and types of inputs can change. Only requirement is output is 
Boolean.

A function that outputs true or false.

Predicate



Analogy

Propositions were like Boolean variables.

What are predicates? Functions that return Booleans
public boolean predicate(…)



Translation

Translation works a lot like when we just had propositions.

Let’s try it…

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2



Domain of Discourse

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2

Can 𝑥 be 4.5? What about “abc” ?

I never intended you to plug 4.5 or “abc” into 𝑥.

When you read the sentence you probably didn’t imagine plugging 
those values in….



Domain of Discourse

𝑥 is prime or 𝑥2 is odd or 𝑥 = 2.

Prime 𝑥 ∨ Odd 𝑥2 ∨ Equals 𝑥, 2

To make sure we can’t plug in 4.5 for 𝑥, predicate logic requires 
deciding on the types we’ll allow 

The set of all inputs allowed as inputs to our predicates.

Domain of Discourse

Often we give the type(s) of allowed inputs, 

like “all integers” or “all real numbers.



Try it…

What’s a possible domain of discourse for these lists of predicates?

1. “𝑥 is a cat”, “𝑥 barks”, “𝑥 likes to take walks”

2. “𝑥 is prime”, “𝑥=5” “𝑥 < 20“ “𝑥 is a power of two”

3. “𝑥 is enrolled in course 𝑦”, “𝑦 is a pre-req for 𝑧"



Try it…

What’s a possible domain of discourse for these lists of predicates?

1. “𝑥 is a cat”, “𝑥 barks”, “𝑥 likes to take walks”

2. “𝑥 is prime”, “𝑥=5” “𝑥 < 20“ “𝑥 is a power of two”

3. “𝑥 is enrolled in course 𝑦”, “𝑦 is a pre-req for 𝑧"

“Mammals”, “pets”, “dogs and cats”, … 

“positive integers”, “integers”, “numbers”, … 

“objects in the university course enrollment system”, “university 

entities”, “students and courses”, … 

More than one domain of discourse might be reasonable…if it might affect the 

meaning of the statement, we specify it. 



Quantifiers

Now that we have variables, let’s really use them…

We tend to use variables for two reasons:

1. The statement is true for every 𝑥, we just want to put a name on it.

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, such that 𝑝(𝑥) and 
𝑞 𝑥 are both true.



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, 𝑝(𝑥) and 𝑞 𝑥 are 
both true.

“∀𝑥“
“for each 𝑥”, “for every 𝑥”, “for all 𝑥” are common translations

Remember: upside-down-A for All.

Universal Quantifier



Quantifiers

We have two extra symbols to indicate which way we’re using the 
variable.

1. The statement is true for every 𝑥, we just want to put a name on it.

∀𝑥 (p x ∧ 𝑞 𝑥 ) means “for every 𝑥 in our domain, 𝑝(𝑥) and 𝑞(𝑥) both 
evaluate to true.” 

2. There’s some 𝑥 out there that works, (but I might not know which it 
is, so I’m using a variable). 

∃𝑥(𝑝 𝑥 ∧ 𝑞 𝑥 ) means “there is an 𝑥 in our domain, for which 𝑝(𝑥) and 
𝑞 𝑥 are both true.

“∃𝑥“
“there is an 𝑥”, “there exists an 𝑥”, “for some 𝑥” are common translations

Remember: backwards-E for Exists.

Existential Quantifier



Translations

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.”

“There are x, 𝑦 such that x < 𝑦.”

∃𝑥 (Odd 𝑥 ∧ LessThan 𝑥, 5 )

∀𝑦 (Even 𝑦 ∧ Odd 𝑦 )



Translations

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.”

“There are x, 𝑦 such that x < 𝑦.”

∃𝑥 (Odd 𝑥 ∧ LessThan 𝑥, 5 )

∀𝑦 (Even 𝑦 ∧ Odd 𝑦 )

∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

∃𝑥∃𝑦(LessThan 𝑥, 𝑦 )

There is an odd number that is less than 5.

All numbers are both even and odd.



Translations

More practice in section and on homework.

Also a reading on the webpage –
An explanation of why “for any” is not a great way to translate ∀ (even though it 
looks like a good option on the surface)

More information on what happens with multiple quantifiers (we’ll discuss more on 
Monday).



Evaluating Predicate Logic

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.” / ∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

Is this true?



Evaluating Predicate Logic

“For every 𝑥, if 𝑥 is even, then 𝑥 = 2.” / ∀𝑥(Even 𝑥 →Equal 𝑥, 2 )

Is this true?

TRICK QUESTION! It depends on the domain. 

Prime Numbers Positive Integers Odd integers

True False True (vacuously)



One Technical Matter

How do we parse sentences with quantifiers? 
What’s the “order of operations?”

We will usually put parentheses right after the quantifier and variable to 
make it clear what’s included. If we don’t, it’s the rest of the expression.

Be careful with repeated variables…they don’t always mean what you 
think they mean.

∀𝑥 𝑃 𝑥 ∧ ∀𝑥(𝑄 𝑥 ) are different 𝑥’s.



Bound Variables

What happens if we repeat a variable? 

Whenever you introduce a new quantifier with an already existing 
variable, it “takes over” that name until its expression ends.

∀𝑥(𝑃 𝑥 ∧ ∀𝑥 𝑄 𝑥 ∧ 𝑅 𝑥 )

It’s common (albeit somewhat confusing) practice to reuse a variables 
when it “wouldn’t matter”. 

Never do something like the above: where a single name switches from 
gold to purple back to gold. Switching from gold to purple only is 
usually fine…but names are cheap.



More Practice

Let your domain of discourse be fruits. Translate these

There is a fruit that is tasty and ripe.

For every fruit, if it is not ripe then it is not tasty.

There is a fruit that is sliced and diced.



More Practice

Let your domain of discourse be fruits. Translate these

There is a fruit that is tasty and ripe.

For every fruit, if it is not ripe then it is not tasty.

There is a fruit that is sliced and diced.

∃𝑥(Tasty 𝑥 ∧Ripe 𝑥 )

∀𝑥(¬Ripe 𝑥 → ¬Tasty 𝑥 )

∃𝑥(Sliced 𝑥 ∧ Diced 𝑥 )



Negation



Negating Quantifiers

What happens when we negate an expression with quantifiers?

What does your intuition say?

Original
Negation

Every positive integer is prime There is a positive integer that is not prime.

∀𝑥 Prime(𝑥)

Domain of discourse: positive integers

∃𝑥(¬ Prime(𝑥))

Domain of discourse: positive integers



Negating Quantifiers

Let’s try on an existential quantifier…

There is a positive integer which is prime 

and even.

Original Negation

∃𝑥(Prime 𝑥 ∧ Even 𝑥 )

Domain of discourse: positive integers

Every positive integer is composite or odd.

∀𝑥(¬Prime 𝑥 ∨ ¬Even 𝑥 )

Domain of discourse: positive integers

To negate an expression with a quantifier

1. Switch the quantifier (∀ becomes ∃, ∃ becomes ∀)

2. Negate the expression inside



Negation

Let your Domain of Discourse be integers; translate into predicate 
notation and negate.

There are integers 𝑥, 𝑦 such that 𝑥𝑦 = 0.

Every integer is even.



Negation

Let your Domain of Discourse be integers; translate into predicate 
notation and negate.

There are integers 𝑥, 𝑦 such that 𝑥𝑦 = 0.

Every integer is even.

Original ∃𝑥∃𝑦(Equal 𝑥𝑦, 0 )
Negation ∀𝑥∀𝑦(¬Equal 𝑥𝑦, 0 )

Original ∀𝑥(Even 𝑥 )
Negation ∃𝑥(¬Even(𝑥))


