
More Logic, Equivalences, 
Symbolic Proofs

CSE 311 Autumn 2024

Lecture 2



Announcements

Lecture recordings on “panopto” – link is posted on ed.

HW1 came out yesterday – on the assignments tab on the webpage
Due Wednesday evening.

You’ll submit to gradescope.

OH have started!
mix of zoom + in-person

Visit early! We get very busy right before deadlines!

CC1 and 2 will both be due Monday 1:30 (delayed deadline for CC1)

Make sure you can get on gradescope today!



Today

More on implications

Simplification Rules



“If it’s raining, then I have my umbrella”

It’s useful to think of implications as 
promises.  An implication is false exactly 
when you can demonstrate I’m lying.

p q p  q

T T T

T F F

F T T

F F T

It’s raining It’s not raining

I have my 

umbrella

No lie.

True

No lie.

True

I do not have 

my umbrella

LIE!

False

No lie.

True

Implication (𝑝 → 𝑞)



𝑝 → 𝑞

𝑝 → 𝑞 and 𝑞 → 𝑝 are different implications!

“If the sun is out, then we have class outside.”

“If we have class outside, then the sun is out.”

Only the first is useful to you when you see the sun come out.

Only the second is useful if you forgot your umbrella. 



𝑝 → 𝑞

Implication:
p implies q

whenever p is true q must be true

if p then q

q if p

p is sufficient for q

p only if q

q is necessary for p

p q p  q

T T T

T F F

F T T

F F T

Implications are super useful, so there are LOTS of translations. 

You’ll learn these in detail in section.



More Connectives



A More Complicated Statement

“Robbie knows the Pythagorean Theorem if he is a 
mathematician and took geometry, and he is a 
mathematician or did not take geometry.”

Is this a proposition?

We’d like to understand what this proposition means.

In particular, is it true?



A Compound Proposition

“Robbie knows the Pythagorean Theorem if he is a 
mathematician and took geometry, and he is a 
mathematician or did not take geometry.”

We’d like to understand what this proposition means.

First find the simplest (atomic) propositions:

𝑝 “Robbie knows the Pythagorean Theorem”

𝑞 “Robbie is a mathematician”

𝑟 “Robbie took geometry”

(𝑝 if (𝑞 and 𝑟)) and (𝑞 or (not 𝑟))

(𝑝 if (𝑞 ∧ 𝑟)) ∧ (𝑞 ∨ (¬𝑟))



Parentheses…

“Robbie knows the Pythagorean Theorem if he is a 
mathematician and took geometry, and he is a 
mathematician or did not take geometry.”

𝑝 “Robbie knows the Pythagorean Theorem”

𝑞 “Robbie is a mathematician”

𝑟 “Robbie took geometry”

How did we know where to put the parentheses?
• Subtle English grammar choices (top-level parentheses 

are independent clauses).

• Context/which parsing will make more sense.

• Conventions

A reading on this is coming soon!

(𝑝 if (𝑞 ∧ 𝑟)) ∧ (𝑞 ∨ (¬𝑟))



Back to the Compound Proposition…

“Robbie knows the Pythagorean Theorem if he is a 
mathematician and took geometry, and he is a 
mathematician or did not take geometry.”

(𝑝 if (𝑞 ∧ 𝑟)) ∧ (𝑞 ∨ (¬𝑟))

What promise am I making?

( (𝑞 ∧ 𝑟)→ 𝑝) ∧ (𝑞 ∨ (¬𝑟)) (𝑝 → (𝑞 ∧ 𝑟)) ∧ (𝑞 ∨ (¬𝑟))

The first one! Being a mathematician and taking geometry is the 

condition. Knowing the Pythagorean Theorem is the promise.

𝑝 “Robbie knows the Pythagorean Theorem”

𝑞 “Robbie is a mathematician”

𝑟 “Robbie took geometry”



Analyzing the Sentence with a Truth Table

𝒑 𝒒 𝒓 ¬𝒓 𝒒 ∨ ¬𝒓 𝒒 ∧ 𝒓 (𝒒 ∧ 𝒓) → 𝒑 (𝒒 ∧ 𝒓 ) → 𝒑 ∧ (𝒒 ∨ ¬𝒓)

F F F T T F T T

F F T F F F T F

F T F T T F T T

F T T F T T F F

T F F T T F T T

T F T F F F T F

T T F T T F T T

T T T F T T T T



Order of Operations
Just like you were taught PEMDAS
e.g. 3 + 2 ⋅ 4 = 11 not 24. 

Logic also has order of operations.

Parentheses

Negation

And

Or, exclusive or

Implication

Biconditional

Within a level, apply from left to right. 

Other authors place And, Or at the same level – it’s good practice to use 
parentheses even if not required.

For this class: each of these is it’s own level!

e.g. “and”s have precedence over “or”s



Logical Connectives

Negation (not) ¬𝑝

Conjunction (and) 𝑝 ∧ 𝑞

Disjunction (or) 𝑝 ∨ 𝑞

Exclusive Or 𝑝 ⊕ 𝑞

Implication(if-then)   𝑝 ⟶ 𝑞

Biconditional 𝑝 ⟷ 𝑞

These ideas have been around for so long most have at least two 

names. 

Two more connectives to discuss!



Biconditional:  𝑝 ↔ 𝑞

p if and only if q

p iff q

p is equivalent to q

p implies q and q implies p

p is necessary and sufficient for q

p q p  q

Think: (𝑝 → 𝑞) ∧ (𝑞 → 𝑝)



Biconditional:  𝑝 ↔ 𝑞

p if and only if q

p iff q

p is equivalent to q

p implies q and q implies p

p is necessary and sufficient for q

p q p  q
T T T

T F F

F T F

F F T

𝑝 ↔ 𝑞 is the proposition: 

“𝑝 and 𝑞 have the same 

truth value.”

Think: (𝑝 → 𝑞) ∧ (𝑞 → 𝑝)



Exclusive Or

Exactly one of the two is true.

𝑝 ⊕ 𝑞

In English “either 𝑝 or 𝑞” is the most common, but be careful. 

Often translated “𝑝 or 𝑞” where you’re just supposed to understand that 
exclusive or is meant (instead of the normal inclusive or).

Try to say “either…or…” in your own writing.

p q p  q



Exclusive Or

Exactly one of the two is true.

𝑝 ⊕ 𝑞

In English “either 𝑝 or 𝑞” is the most common, but be careful. 

Often translated “𝑝 or 𝑞” where you’re just supposed to understand that 
exclusive or is meant (instead of the normal inclusive or). 

Try to say “either…or…” in your own writing.

p q p  q

T T F

T F T

F T T

F F F



Today

A proof!

We want to be able to make iron-clad guarantees that something is 
true.

And convince others that we really have ironclad guarantees.

But first, some notation.



Logical Equivalence

We will want to talk about whether two propositions are “the same.”

Two propositions are “equal” (=) if they are character-for-character identical.

𝑝 ∧ 𝑞 = 𝑝 ∧ 𝑞 but 𝑝 ∧ 𝑞 ≠ 𝑞 ∧ 𝑝

We almost never ask whether propositions are equal. It’s not an interesting question.

Two propositions are “equivalent” (≡) if they always have the same truth value.

𝑝 ∧ 𝑞 ≡ 𝑝 ∧ 𝑞 and 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

But 𝑝 ∧ 𝑞 ≢ 𝑝 ∨ 𝑞
When 𝑝 is true and 𝑞 is false: 𝑝 ∧ 𝑞 is false, but 𝑝 ∨ 𝑞 is true.



A  B vs.  A  B

A  B is an assertion over all possible truth values that A and B always 
have the same truth values.

Use 𝐴 ≡ 𝐵 when you’re manipulating propositions (“doing algebra”)

A  B is a proposition that may be true or false depending on the 
truth values of the variables in A and B.

This distinction will be easier to understand after you see us use them 
both a few time.



Simplification and Proofs



Manipulating Expressions

When we’re doing algebra, we can apply rules to transform expressions

𝑎 + 𝑏 𝑐 + 𝑑 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑 or 𝑎𝑏 + 𝑎𝑐 = 𝑎(𝑏 + 𝑐)

We want rules for logical expressions too.

For two rules, we’ll:
1. Derive it/make sure we understand why it’s true.

2. Practice using it.

By the end of the course, you’ll do these “automatically” on full sentences; for now 
we’ll practice mechanically on symbolic forms.

As you’re practicing, don’t lose sight of the intuition for what you’re doing.



Negate the statement 

“my code compiles or there is a bug.”

i.e. find a natural English sentence that says 

“the following is not true: my code compiles or there is a bug”

Hint: when it the original sentence false?

De Morgan’s Laws

‘or’ means ‘at least one is true’ so to negate, we need to say ‘neither is 

true’ or equivalently ‘both are false’

“my code does not compile and there is not a bug” 



¬ 𝑝 ∨ 𝑞 ≡ ¬𝑝 ∧ ¬𝑞

De Morgan’s Laws

is a general rule. It’s always true for any propositions 𝑝 and 𝑞. 

This is one of De Morgan’s Laws. 

The other is: ¬ 𝑝 ∧ 𝑞 ≡ ¬𝑝 ∨ ¬𝑞



De Morgan’s Laws

p q p q p  q p  q (p  q)

T T F F F T F

T F F T T F T

F T T F T F T

F F T T T F T

Example: ¬ 𝑝 ∧ 𝑞 ≡ ¬𝑝 ∨ ¬𝑞

Every line is the same! 

So these expressions are equivalent.



De Morgan’s Laws

if (!(front != null && value > front.data))

front = new ListNode(value, front);

else {

ListNode current = front;

while (current.next != null && current.next.data < value))

current = current.next;

current.next = new ListNode(value, current.next);

}

¬ 𝑝 ∧ 𝑞 ≡ ¬𝑝 ∨ ¬𝑞
¬ 𝑝 ∨ 𝑞 ≡ ¬𝑝 ∧ ¬𝑞



De Morgan’s Laws

!(front != null && value > front.data)

front == null || value <= front.data



You’ve been using these for a while!

¬ 𝑝 ∧ 𝑞 ≡ ¬𝑝 ∨ ¬𝑞
¬ 𝑝 ∨ 𝑞 ≡ ¬𝑝 ∧ ¬𝑞



Law of Implication

Implications are hard. 

AND/OR/NOT make more intuitive sense to me… 

can we rewrite implications using just ANDs ORs and NOTs?

One approach: think “when is this implication false?” 

then negate it (you might want one of DeMorgan’s

Laws!

𝑝 𝑞 𝑝 → 𝑞

T T T

T F F

F T T

F F T



Law of Implication

Implications are hard. 

AND/OR/NOT make more intuitive sense to me… 

can we rewrite implications using just ANDs ORs and NOTs?

Seems like we might want ¬(𝑝 ∧ ¬𝑞)
¬𝑝 ∨ 𝑞

Seems like a reasonable guess.

So is it true? Is ¬𝑝 ∨ 𝑞 ≡ 𝑝 → 𝑞?

𝑝 𝑞 𝑝 → 𝑞

T T T

T F F

F T T

F F T



Law of Implication

𝒑 𝒒 𝒑 → 𝒒 ¬𝒑 ¬𝒑 ∨ 𝒒

T T T F T

T F F F F

F T T T T

F F T T T

¬𝑝 ∨ 𝑞 ≡ 𝑝 → 𝑞

Every line is the same! 

So these expressions are equivalent.



Properties of Logical Connectives

We’ve derived two facts about logical connectives.

There’s a lot more. A LOT more.

The next slide is a list of a bunch of them…
Most of these are much less complicated than the last two, so we won’t go through 
them in detail.

DO NOT freak out about how many there are. We will always provide you the list on 
the next slide (no need to memorize).



• Identity

• 𝑝 ∧ T ≡ 𝑝
• 𝑝 ∨ F ≡ 𝑝

• Domination

• 𝑝 ∨ T ≡ T
• 𝑝 ∧ F ≡ F

• Idempotent

• 𝑝 ∨ 𝑝 ≡ 𝑝
• 𝑝 ∧ 𝑝 ≡ 𝑝

• Commutative

• 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
• 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• Associative

• 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
• 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ 𝑞 ∧ 𝑟

• Distributive

• 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ 𝑝 ∧ 𝑟
• 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• Absorption

• 𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝
• 𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝

• Negation

• 𝑝 ∨ ¬𝑝 ≡ T
• 𝑝 ∧ ¬𝑝 ≡ F

These identities hold for all propositions 𝑝, 𝑞, 𝑟

Properties of Logical Connectives
You don’t have to 

memorize this list!



Using Our Rules

WOW that was a lot of rules.

Why do we need them? Simplification!

Let’s go back to the “law of implication” example. 

𝑝 𝑞 𝑝 → 𝑞

T T T

T F F

F T T

F F T

When is the implication true? Just “or” each of the three 

“true” lines!

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ (¬𝑝 ∧ ¬𝑞)
Also seems pretty reasonable

So is 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ (¬𝑝 ∨ 𝑞)?
i.e. are these both alternative representations of 𝑝 → 𝑞?



Our First Proof

We could make another truth table (you should! It’s a good exercise)

But we have another technique that is nicer. 

Let’s try that one
Then talk about why it’s another good option. 

We’re going to give an iron-clad guarantee that:

𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ≡ ¬𝑝 ∨ 𝑞

i.e. that this is another valid “law of implication”



Our First Proof

This will be a long proof! Longer than most of the ones on homeworks.
I’m starting with a hard one so you see all the tricks.

This process will be easier if we change variables, we’re going to show

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ≡ ¬𝑎 ∨ 𝑏

How do we write a proof?

It’s not always plug-and-chug…we’ll be highlighting strategies 
throughout the quarter.

To start with:

Make sure we know what we want to show…



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

None of the rules look like this

Practice of Proof-Writing:

Big Picture…WHY do we think this 

might be true? 

The last two “pieces” came from the 

vacuous proof lines…maybe the “¬𝑎” 

came from there? Maybe that 

simplifies down to ¬𝑎



Let’s apply a rule

¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)

The law says:

𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)

¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ≡ ¬𝑎 ∧ (𝑏 ∨ ¬𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑝 ∧ 𝑞 ∨ [ ¬𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ ¬𝑞 ]
≡ 𝑝 ∧ 𝑞 ∨ ¬𝑝 ∧ 𝑞 ∨ ¬𝑞
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝 ∧ T]
≡ 𝑝 ∧ 𝑞 ∨ [¬𝑝]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞

≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

None of the rules look like this

Practice of Proof-Writing:

Big Picture…WHY do we think this 

might be true? 

The last two “pieces” came from the 

vacuous proof lines…maybe the “¬𝑎” 

came from there? Maybe that 

simplifies down to ¬𝑎



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)

≡

¬𝑝

∨ 𝑝

∧ ¬𝑝 ∨ 𝑞

≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces Associative law

Connect up the things we’re working on.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏

≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Distributive law

We think ¬𝑎 is important, let’s isolate it.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]

≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)
≡ ¬𝑝 ∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞
≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Negation

Should make things simpler.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑝 ∨ (𝑝 ∧ 𝑞)

≡
¬𝑝
∨ 𝑝 ∧ ¬𝑝 ∨ 𝑞

≡ T ∧ ¬𝑝 ∨ 𝑞
≡ ¬𝑝 ∨ 𝑞 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Set ourselves an intermediate goal.

Let’s try to simplify those last two 

pieces

Identity

Should make things simpler.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]

≡ (¬𝑎 ∨ 𝑏)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)

≡ (¬𝑎 ∨ 𝑏)

Commutative

Make the expression look exactly like the law (more on this later)

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)
≡ ¬𝑎 ∨ 𝑎 ∧ ¬𝑎 ∨ 𝑏

≡ (¬𝑎 ∨ 𝑏)

Distributive

Creates the (¬𝑎 ∨ 𝑏) we were hoping for.

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)
≡ ¬𝑎 ∨ 𝑎 ∧ ¬𝑎 ∨ 𝑏
≡ 𝑎 ∨ ¬𝑎 ∧ (¬𝑎 ∨ 𝑏)
≡ T ∧ ¬𝑎 ∨ 𝑏

≡ (¬𝑎 ∨ 𝑏)Commutative

Make the expression look exactly like the law (more on this later)
Negation

Simplifies the part we want to disappear.

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



• Identity

• 𝑝 ∧ T ≡ 𝑝
• 𝑝 ∨ F ≡ 𝑝

• Domination

• 𝑝 ∨ T ≡ T
• 𝑝 ∧ F ≡ F

• Idempotent

• 𝑝 ∨ 𝑝 ≡ 𝑝
• 𝑝 ∧ 𝑝 ≡ 𝑝

• Commutative

• 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
• 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• Associative

• 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑟 ∨ 𝑞 ∨ 𝑟
• 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ 𝑞 ∧ 𝑟

• Distributive

• 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ 𝑝 ∧ 𝑟
• 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• Absorption

• 𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝
• 𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝

• Negation

• 𝑝 ∨ ¬𝑝 ≡ T
• 𝑝 ∧ ¬𝑝 ≡ F

These identities hold for all propositions 𝑝, 𝑞, 𝑟

Simplify T∧ (¬𝑎 ∨ 𝑏) to (¬𝑎 ∨ 𝑏)



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)
≡ ¬𝑎 ∨ 𝑎 ∧ ¬𝑎 ∨ 𝑏
≡ 𝑎 ∨ ¬𝑎 ∧ (¬𝑎 ∨ 𝑏)
≡ T ∧ ¬𝑎 ∨ 𝑏
≡ ¬𝑎 ∨ 𝑏 ∧ T
≡ (¬𝑎 ∨ 𝑏)Commutative followed by Identity 

Look exactly like the law, then apply it.

We’re done!!! 

Stay on target:

We met our intermediate goal.

Don‘t forget the final goal! 

We want to end up at ¬𝑎 ∨ 𝑏

If we apply the distribution rule,

We’d get a (¬𝑎 ∨ 𝑏)



Commutativity

We had the expression 𝑎 ∧ 𝑏 ∨ [¬𝑎]

But before we applied the distributive law, we switched the order…why?

The law says 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ p ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

not 𝑞 ∧ 𝑟 ∨ 𝑝 ≡ 𝑞 ∨ 𝑝 ∧ (𝑟 ∨ 𝑝)

So technically we needed to commute first.

Eventually (in about 2 weeks) we’ll skip this step. For now, we’re doing 
two separate steps.
Remember this is the “training wheel” stage. The point is to be careful.



More on Our First Proof

We now have an ironclad guarantee that

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ≡ (¬𝑎 ∨ 𝑏)

Hooray! But we could have just made a truth-table. Why a proof?

Here’s one reason.

Proofs don’t just give us an ironclad guarantee. They’re also an 
explanation of why the claim is true.

The key insight to our simplification was “the last two pieces were the 
vacuous truth parts – the parts where 𝑝 was false” 

That’s in there, in the proof.



Our First Proof

𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ (¬𝑎 ∧ ¬𝑏)≡ 𝑎 ∧ 𝑏 ∨ [ ¬𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ ¬𝑏 ]
≡ 𝑎 ∧ 𝑏 ∨ ¬𝑎 ∧ 𝑏 ∨ ¬𝑏
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎 ∧ T]
≡ 𝑎 ∧ 𝑏 ∨ [¬𝑎]
≡ ¬𝑎 ∨ (𝑎 ∧ 𝑏)
≡ ¬𝑎 ∨ 𝑎 ∧ ¬𝑎 ∨ 𝑏
≡ 𝑎 ∨ ¬𝑎 ∧ (¬𝑎 ∨ 𝑏)
≡ T ∧ ¬𝑎 ∨ 𝑏
≡ ¬𝑎 ∨ 𝑏 ∧ T
≡ (¬𝑎 ∨ 𝑏)

Associative

Distributive

Negation

Identity

Commutative

Distributive

Commutative

Negation

Commutative

Identity

The last two terms are 

“vacuous truth” – they 

simplify to ¬𝑎

𝑎 no longer matters in 𝑎 ∧ 𝑏
if ¬𝑎 automatically makes 

the expression true.



More on Our First Proof

With practice (and quite a bit of squinting) you can see not just the 
ironclad guarantee, but also the reason why something is true.

That’s not easy with a truth table.

Proofs can also communicate intuition about why a statement is true.
We’ll practice extracting intuition from proofs more this quarter.


