
CSE 311 Section 5

Number Theory & Induction



Administrivia & Introductions



Announcements & Reminders

● HW3
○ If you think something was graded incorrectly, submit a regrade request!

● HW4 due yesterday 10PM on Gradescope
○ Use late days if you need them!

● HW5
○ 2 parts!

○ BOTH PARTS due Wednesday 2/8 @ 10pm

● Midterm is Next Weekend! (Friday 2/10 – Sunday 2/12)
○ “Take Home” exam on Gradescope

○ You will have 90 minutes to complete it, starting from when you open it on Gradescope

○ It is designed to take ~30 minutes



References

● Helpful reference sheets can be found on the course website!
○ https://courses.cs.washington.edu/courses/cse311/23wi/resources/

● How to LaTeX (found on Assignments page of website):
○ https://courses.cs.washington.edu/courses/cse311/23wi/assignments/HowToLaTeX.pdf

● Set Reference Sheet
○ https://courses.cs.washington.edu/courses/cse311/23wi/resources/reference-sets.pdf

● Number Theory Reference Sheet
○ https://courses.cs.washington.edu/courses/cse311/23wi/resources/reference-number-theory.pdf

● Induction Templates
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/induction-templates.pdf

● Plus more!

https://courses.cs.washington.edu/courses/cse311/23wi/resources/
https://courses.cs.washington.edu/courses/cse311/23wi/assignments/HowToLaTeX.pdf
https://courses.cs.washington.edu/courses/cse311/23wi/resources/reference-sets.pdf
https://courses.cs.washington.edu/courses/cse311/23wi/resources/reference-number-theory.pdf
https://courses.cs.washington.edu/courses/cse311/22sp/resources/induction-templates.pdf


Number Theory



Some Definitions

● Divides: 

○ For 𝑎, 𝑏 ∈ ℤ: 𝑎 ∣ 𝑏 iff ∃ 𝑘 ∈ ℤ 𝑏 = 𝑘𝑎

○ For integers 𝑎 and 𝑏, we say 𝑎 divides 𝑏 if and only if there exists 

an integer 𝑘 such that 𝑏 = 𝑘𝑎

● Congruence Modulo:

○ For 𝑎, 𝑏 ∈ ℤ,𝑚 ∈ ℤ+: 𝑎 ≡ 𝑏 (mod 𝑚) iff𝑚 ∣ (𝑏 − 𝑎)

○ For integers 𝑎 and 𝑏 and positive integer 𝑚, we say 𝑎 is 

congruent to 𝑏 modulo 𝑚 if and only if 𝑚 divides 𝑏 − 𝑎



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Lets walk through part (a) together.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 
… 

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.

Start with your 
proof skeleton!



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers 
𝑘, 𝑗. 
…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers 
𝑘, 𝑗. 
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎). 
…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers 
𝑘, 𝑗. 
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎). 

Then, dividing both sides by 𝑎, we get 1 = 𝑗𝑘. So, 
1

𝑗
= 𝑘. 

…

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

Suppose that 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎, 𝑏 are integers. 

By the definition of divides, we have 𝑎 ≠ 0, 𝑏 ≠ 0 and 𝑏 = 𝑘𝑎, 𝑎 = 𝑗𝑏 for some integers 
𝑘, 𝑗. 
Combining these equations, we see that 𝑎 = 𝑗(𝑘𝑎). 

Then, dividing both sides by 𝑎, we get 1 = 𝑗𝑘. So, 
1

𝑗
= 𝑘. 

Note that 𝑗 and 𝑘 are integers, which is only possible if 𝑗, 𝑘 ∈ {1, −1}. 

Therefore, it follows that 𝑎 = −𝑏 or 𝑎 = 𝑏.



Problem 5 – Modular Arithmetic

a) Prove that if 𝑎 ∣ 𝑏 and 𝑏 ∣ 𝑎, where 𝑎 and 𝑏 are integers, then 𝑎 = 𝑏 or 
𝑎 = −𝑏.

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Now try part (b) with the people around you, and then we’ll go over it together!



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Suppose 𝑛 ∣ 𝑚 with 𝑛,𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

…

Therefore, we have 𝑎 ≡ 𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Suppose 𝑛 ∣ 𝑚 with 𝑛,𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

…
… we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Suppose 𝑛 ∣ 𝑚 with 𝑛,𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

… 
… we have 𝑏 − 𝑎 = 𝑛𝐶. 
By definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).

NOTE: we don’t know 
what C will look like 
yet, just that there is 
SOME integer here!



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Suppose 𝑛 ∣ 𝑚 with 𝑛,𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ. 
… 
… we have 𝑏 − 𝑎 = 𝑛𝐶. 
By definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Suppose 𝑛 ∣ 𝑚 with 𝑛,𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ. 
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some 
𝑗 ∈ ℤ.
… 
… we have 𝑏 − 𝑎 = 𝑛𝐶. 
By definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Suppose 𝑛 ∣ 𝑚 with 𝑛,𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ. 
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some 
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗). 
… we have 𝑏 − 𝑎 = 𝑛𝐶. 
By definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Suppose 𝑛 ∣ 𝑚 with 𝑛,𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ. 
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some 
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗). 
Equivalently, we have 𝑏 − 𝑎 = 𝑛(−𝑘𝑗).
By definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).



Problem 5 – Modular Arithmetic

b) Prove that if 𝑛 ∣ 𝑚, where 𝑛 and 𝑚 are integers greater than 1, and if 
𝑎 ≡ 𝑏 (mod 𝑚), where 𝑎 and 𝑏 are integers, then 𝑎 ≡ 𝑏 (mod 𝑛).

Suppose 𝑛 ∣ 𝑚 with 𝑛,𝑚 > 1, and 𝑎 ≡ 𝑏 (mod 𝑚). 

By definition of divides, we have 𝑚 = 𝑘𝑛 for some 𝑘 ∈ ℤ. 
By definition of congruence, we have 𝑚 ∣ 𝑎 − 𝑏, which means that 𝑎 − 𝑏 = 𝑚𝑗 for some 
𝑗 ∈ ℤ.
Combining the two equations, we see that 𝑎 − 𝑏 = (𝑘𝑛𝑗) = 𝑛(𝑘𝑗). 
Equivalently, we have 𝑏 − 𝑎 = 𝑛(−𝑘𝑗).
Because −𝑘𝑗 is an integer, by definition of divides, we have 𝑛 ∣ (𝑏 − 𝑎).

Therefore, by definition of congruence, we have 𝑎 ≡ 𝑏 (mod 𝑛).



Induction



Induction Template

Let 𝑃(𝑛) be “(whatever you’re trying to prove)”. 

We show 𝑃(𝑛) holds for all 𝑛 by induction on 𝑛.

Base Case: Show 𝑃(𝑏) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Show 𝑃(𝑘 + 1) (i.e. get 𝑃(𝑘) → 𝑃(𝑘 + 1)) 

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 by the principle of induction.



Induction Template

Let 𝑃(𝑛) be “(whatever you’re trying to prove)”. 

We show 𝑃(𝑛) holds for all 𝒏 by induction on 𝑛.

Base Case: Show 𝑃(𝑏) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Show 𝑃(𝑘 + 1) (i.e. get 𝑃(𝑘) → 𝑃(𝑘 + 1)) 

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝒏 by the principle of induction.

Note: often you will 
condition 𝑛 here, like 
“all natural numbers 𝑛” 
or “𝑛 ≥ 0”

Match the earlier condition on 𝑛 in your conclusion!



Problem 6 – Induction with Equality

a) Show using induction that 0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
for all 𝑛 ∈ ℕ. 

b) Define the triangle numbers as △𝑛= 1 + 2 +··· +𝑛, where 𝑛 ∈ ℕ. In part (a) we 

showed △𝑛=
𝑛(𝑛+1)

2
. Prove the following equality for all 𝑛 ∈ ℕ :

03 + 13 +⋯+ 𝑛3 =△𝑛
2

Lets walk through part (a) together.

We can “fill in” our induxtion template to construct our proof by induction.



Problem 6 – Induction with Equality
Show using induction that 

0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “”. We show 𝑃(𝑛) holds for (some) 𝑛 by induction on 𝑛.

Base Case: 𝑃(𝑏): 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for (some) 𝑛 by the principle of induction.



Problem 6 – Induction with Equality
Show using induction that 

0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(𝑏): 

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 6 – Induction with Equality
Show using induction that 

0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 +⋯ = 0 =
0(0+1)

2
so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏.

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 6 – Induction with Equality
Show using induction that 

0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 +⋯ = 0 =
0(0+1)

2
so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 +⋯+ 𝑘 =
𝑘(𝑘+1)

2

Inductive Step: Goal: Show 𝑃 𝑘 + 1 :

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 6 – Induction with Equality
Show using induction that 

0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 +⋯ = 0 =
0(0+1)

2
so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 +⋯+ 𝑘 =
𝑘(𝑘+1)

2

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯+ 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 6 – Induction with Equality
Show using induction that 

0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 +⋯ = 0 =
0(0+1)

2
so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 +⋯+ 𝑘 =
𝑘(𝑘+1)

2

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯+ 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2

0 + 1 +⋯+ 𝑘 + 𝑘 + 1 = ⋯

…

=
(𝑘+1)(𝑘+2)

2
?

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by the principle of induction.



Problem 6 – Induction with Equality
Show using induction that 

0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2

for all 𝑛 ∈ ℕ. 

Let 𝑃(𝑛) be “0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
”. We show 𝑃(𝑛) holds for all 𝑛 ∈ ℕ by induction on 𝑛.

Base Case: 𝑃(0): 0 +⋯ = 0 =
0(0+1)

2
so the base case holds.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 0, i.e. 0 + 1 + 2 +⋯+ 𝑘 =
𝑘(𝑘+1)

2

Inductive Step: Goal: Show 𝑃 𝑘 + 1 : 0 + 1 + ⋯+ 𝑘 + 𝑘 + 1 =
(𝑘+1)(𝑘+2)

2

0 + 1 +⋯+ 𝑘 + (𝑘 + 1) = (0 + 1 +⋯+ 𝑘) + (𝑘 + 1)

…

=
(𝑘+1)(𝑘+2)

2
?
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Problem 6 – Induction with Equality

a) Show using induction that 0 + 1 + 2 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
for all 𝑛 ∈ ℕ. 

b) Define the triangle numbers as △𝑛= 1 + 2 +··· +𝑛, where 𝑛 ∈ ℕ. In part (a) we 

showed △𝑛=
𝑛(𝑛+1)

2
. Prove the following equality for all 𝑛 ∈ ℕ :

03 + 13 +⋯+ 𝑛3 =△𝑛
2

Now try part (b) with people around you, and then we’ll go over it together!
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𝑘(𝑘+1)

2

2
+ (𝑘 + 1)3 by (a)

= (𝑘 + 1)2
𝑘2

22
+ (𝑘 + 1) factor out (𝑘 + 1)2

= (𝑘 + 1)2
𝑘2+4𝑘+4

4

= (𝑘 + 1)2
(𝑘+2)2

4
factor numerator
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2

2
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That’s All, Folks!

Thanks for coming to section this week!
Any questions?


