CSE 311 Winter 23
Lecture 17

Structural Induction

Induction Big Picture

So far: We used induction to prove a statement over the natural numbers.

"Prove that P(n) holds for all natural numbers n” <c.q.
_ Cn) is S i - nine)

2

Next goal: In CS, we deal with Strings, Lists, Trees, and other recursively
defined sets. Would like to prove statements over these sets.

“Prove that P(T) holds for all trees T”

“Prove that P(x) holds for all strings x."

Recursive Definitions of Sets

Define a set S as follows:
i Basis Step: 0 € S
Recursive Step: If x € Sthenx + 2 € S.

e

Exclusion Rule: Every element of S follows from the basis step or a finite

number of recursive steps.
u L, gon‘d wre w1 prahce

Q1: What is §? A\l nennegafive even mnieger €02, 4,06...3

QZ2: Why do we need the exclusion rule?

Recursive Definitions of Sets

All Natural Numbers
Basis Step: 0 € S
Recursive Step: If x € Sthenx +1 € S.

All Integers
Basis Step: 0 € S FWO K CWRAVE SRPS
Recursive Step: If x € Sthenx+ 1 €Sandx —1€S.

Integer coordinates in the line y = x
Basis Step: (0,0) € S
Recursive Step: If (x,y) e Sthen(x+1,y+1)eSand (x—1,y—1) €S.

Recursive Definitions of Sets

QT: What is this set? £ 02, (5018212 27,3
Basis Step: 6 € S,15 € S | T

Recursive Step: If x,y € Sthenx +y €S
ol niegtn > 2 duvisibie by 3, and

Q2: Write a recursive definition for the set of powers of 3 {1,3,9,27, ...}

Basis Step: 1 ¢5

Recursive Step: 1 neS, xun 3 €S

Structural Induction

Goal is to prove P(s) forall s € S...

¢
recwsively Oehined seb

Base Case: Show P(b) for all elements b in the basis step.

Inductive Hypothesis: Assume P() holds for arbitrary element(s) that
we've already constructed

Inductive Step: Prove that P() holds for a new element constructed
using the recursive step

Conclusion: Conclude P() holds for all s € S.

Structural Induction Example

Let S be:
Basis: 6 € S,15 € S
Recursive: if x,y € Sthenx +y € S.

Show by structural induction that every element of S is divisible by 3.

Basis: 6 €S,15 € S

StrUCtural IndUCtlon Recursive: if x,y € S thenx +y € S.
by St ctwrad
1. Intro: et P(x) Yt “S!X“. We shon PO holds for adl xeS§ by el o r.
2. Base Case(s): LP (o) and elis)
G:-%5-2.50 23l6. So P(L) heldls. 152 3.5 so 3115, 90 P18) holds.

3. Inductive Hypothesis: (suppose PO ond 2y) |
supeose P and P(y) hod for owbitrany X\ esS.

4. Inductive Step:lc:ocutsv\ow POX+Y) | s
BY W (3Ix. SO X=3a %or a€Z. DY IH(3ly. So y=30 o~ :
Then *

Yty - 30+3p: 3(atb). So 3| X1y . Twus P(\c—ea_) hololS .

5 Conclusion: Tthus PCx) wods for ahl xeS b%_ stuctuval induchon.

Basiss 6 €S,15 € S

Stru Ctu ral IndUCtion Recursive: if x,y € S thenx +y € S.

1. Intro: Let P(x) be x is divisible by 3. We show P(x) holds for all x € S by
structural induction.

2. Base Case(s): 6 = 2 -3 so 3|6, and P(6) holds. 15 =5 -3, so 3|15 and
P(15) holds.

3. Inductive Hypothesis:
4. Inductive Step:

5. Conclusion: We conclude P(x)Vx € S by the principle of induction.

Basiss 6 €S,15 € S

Stru Ctu ral IndUCtion Recursive: if x,y € S thenx +y € S.

1. Intro: Let P(x) be x is divisible by 3. We show P(x) holds for all x € S by
structural induction.

2. Base Case(s): 6 = 2 -3 so 3|6, and P(6) holds. 15 =5 -3, so 3|15 and
P(15) holds.

3. Inductive Hypothesis: Suppose P(x) and P(y) for arbitrary x,y € S.
4. Inductive Step:

5. Conclusion: We conclude P(x)Vx € S by the principle of induction.

Basiss 6 €S,15 € S

Stru Ctu ral IndUCtion Recursive: if x,y € S thenx +y € S.

1. Intro: Let P(x) be x is divisible by 3. We show P(x) holds for all x € S by
structural induction.

2. Base Case(s): 6 = 2 -3 s0 3|6, and P(6) holds. 15 =5 - 3, so 3|15 and
P(15) holds.

3. Inductive Hypothesis: Suppose P(x) and P(y) for arbitrary x,y € S.
4. Inductive Step: | Goal P(x + y) holds

By IH 3|xand 3|y. So x = 3n and y = 3m for integers m, n.

Adding the equations, x + y = 3(n + m). Since n, m are integers, we have
3|(x + y) by definition of divides. This gives P(x + y).

5. Conclusion: We conclude P(x)Vx € S by the principle of induction.

Structural Induction Template

1. Define P() Show that P(x) holds for all x € S. State your proof is by
structural induction.

2. Base Case: Show P(x) for all base cases x in S.

3. Inductive Hypothesis: Suppose P(x) for all x listed as in S in the
recursive rules.

4. Inductive Step: Show P() holds for the "new element” given.
You will need a separate step for every rule.
5. Therefore P(x) holds for all x € S by the principle of induction.

| ¢ xeS, x+tle§ show Plxtl)
L6 XS Sxes Svow PCSx)

Wait a minute! Why can we do this?

S

Basis:6 € 5,15 € S
Recursive: if x,y € Sthenx +y € S.

We proved:
Base Case: P(6) and _P_(1_5)

==

IH — IS: If P(x) and P(y), then P(x+y)

Weak Induction is a special case of Structural

N

Basis: 0 € N
Recursive: if k € Nthen k + 1 € N.

We proved:
Base Case: P(0)

—————

IH = IS: If P(k), then P(k+1)

. 2l
Strlngs Basis SKp -

Kecuvsive Step*
¥ will be an alphabet the set of all the letters you can use in strings.

F.g.2 ={0,1}
Eg Z — {a; b; C, ...,Z,_}

| £*|is the set of all strings you can build off of the letters.
F.g.ifX =101}, then 01001 €X* 0e ¥ (llles* ¢eg*
E.g. ifZ ={ab,c, ..,z _} theni_love_recursive_sets € X*

¢ is the empty string
Analogous to " in Java (nOT wull)

Strings

— The set of all strings £* can be defined as:
Basis Step: ¢ € X7,

Recursive Step: If w € £* and a € X then wa € X*

— wa means the string of w with the character a appended

1€ w=thelsd and o='c,
wo = “lulloc™

Lr fawu s W+O in JAVA

2= éol\g

a\\ binaw) s*YEV\g.B

Functions on Strings

Length:
len(e) =0
len(wa) =len(w)+1forw € X", a € X

Reversal:

eR =g

(wa)R = awR forw e X*, a € X

Number of ¢’s in a string

#:.(e) =0
#.(wec) =#.,(w)+ 1forw e X%
#.(wa) =#.(w) forwex*,ae X\ {c}

Nln + DN
2

n -
p(_v\) . “ Z_L =
=t

L» puncttons onn N = Sum,
fvuoLch.e.H.

(A=¢ca]

lewn (abC) = (en(ab) +|
= len(a@) + 1<)
= (th(eod + 1€ |
Stence) €1t 1+l

0« ltl+l
= (sv\ocu‘mq‘.)

(ab)%= cab)®
= cb(a)"
- cber)®

= Cba (£)2

=clbag = CbO

Claim: len(x-y)=len(x) + len(y) for all x,y € X~.

vested esvall

Let P(y) be “len(x - y) = len(x) + len(y) for all x € £*." Prove P(y) tor
all y € ¥*.

Notice the strangeness of this P(). There is a “for all x” inside the
definition of P(y).

That means we'll have to introduce an arbitrary x as part of the_base
case and the inductive step!

2.0
> P(e) 1S “len (x- €)= lenx) +lenle) v all xeS**

Basis: € € X7.
Claim: |en(x.y):|en(x) + |en(y) for all X,y =2 Recursive: If w € X* and a € X then wa € X*

1. Introduction: Let ey be Y lenO¢-y)=len(x) + len(y) fovr all xe2* "
we pvove Ply) foc al ye 2 ¥ by syvucwral mduohon.

2. Base Case: (geal: P(£) |

Lex XeZ¥ yeavbirvany. Thn len C X-¢€) = lenlx) = lenn () + O = 1tn(x) +lenled

3. Inductive Hypothesis: (suppose PCus)] Se P(e) nolds.
Suppese PLw) walds fov arbitowy we £¥. twun for all e s ¥

4. Inductive Step: (oot = PCwa) 4wr a e £ ten (X-w) = len(y) tlen(w) .
Lek X€Z2* be ovbitvavy. Let aes be awbi*hrav:j. Twens
en CX-wa) = len(x-w) +l by dL+ o+ 1en

e () + ten(w) + | by IH

len (<) + len(wad by ALE OF 1N

So PCwa) hods.

‘\

"

$)

<incmde CovioMStoN 400

Basis: € € X7,
Claim: |en(x.y):|en(x) + |en(y) for all X,y = Recursive: If w € 2™ and a € X then wa € X

1. Introduction: Let P(y) be “len(x - y) = len(x) + len(y) for all x € £*." We prove
P(y) forall y € £* by structural induction.

2. Base Case:
3. Inductive Hypothesis:

4. Inductive Step:

5. Therefore P(y) holds for all y € £*by the principle of induction.

Basis: € € X7,
Claim: |en(x.y):|en(x) + |en(y) for all X,y = Recursive: If w € 2™ and a € X then wa € X

1. Introduction: Let P(y) be “len(x - y) = len(x) + len(y) for all x € £*." We prove
P(y) forall y € £* by structural induction.

2. Base Case: Let x be an arbitrary string. Then len(x - €) = len(x) = len(x) + 0 =
len(x) + len(e)
3. Inductive Hypothesis:

4. Inductive Step:

5. Therefore P(y) holds for all y € £*by the principle of induction.

Basis: € € X7,
Claim: |en(x.y):|en(x) + |en(y) for all X,y = Recursive: If w € 2™ and a € X then wa € X

1. Introduction: Let P(y) be “len(x - y) = len(x) + len(y) for all x € £*." We prove
P(y) forall y € £* by structural induction.

2. Base Case: Let x be an arbitrary string. Then len(x - €) = len(x) = len(x) + 0 =
len(x) + len(e)
3. Inductive Hypothesis: Suppose P(w) for an arbitrary w € X*.

4. Inductive Step:

5. Therefore P(y) holds for all y € £*by the principle of induction.

Basis: € € X7,
Recursive: If w € 2" and a € X then wa € X*

Claim: len(x-y)=len(x) + len(y) for all x,y € Z*.

1. Introduction: Lebe “len(x - y) = len(x) + len(y) for all x € £*." We prove
DV

P(y) forall y € &* ructural induction.

2. Base Case: Let x n arbitrary string. Then len(x - €) = len(x) = len(x) + 0 =
len(x) +len(e) (Ceced

3. Inductive Hypothesis: Suppose @or an arbitrary w € Z*.

4. Inductive Step: Let x € X*be an arbitrary string, and a € Z be arbitrary.

len(xwa) = len(xw) + 1 (by definition of len) PLna)
= len(x) + len(w) + 1 (by 1H)

= len(x) + len(wa) (by definition of len)
Therefore, len(xwa) = len(x) + len(wa).
5. Therefore @olds for all y € Z*by the principle of induction.

More Structural Sets

Binary Trees are another common source of structural induction.

Basis Step: A single node is a rooted binary tree. @

Recursive Step: If T; and T, are rooted binary trees with roots r; and ry,
then a tree rooted at a hew node, with children ry, r, is a binary tree.

Functions on Binary Trees

Size(@®@)=

size(Q) = size(Ty) + size(T,) + 1

height(®) = 0

height(;’\A) = T+max(height(T;),height(T,))

Structural Induction on Binary Trees

For every rooted binary tree T, size(T) < 2height(T+1 _ 1

We'll show this next time.

	Slide 1: Structural Induction
	Slide 2: Induction Big Picture
	Slide 3: Recursive Definitions of Sets
	Slide 4: Recursive Definitions of Sets
	Slide 5: Recursive Definitions of Sets
	Slide 6: Structural Induction
	Slide 7: Structural Induction Example
	Slide 8: Structural Induction
	Slide 9: Structural Induction
	Slide 10: Structural Induction
	Slide 11: Structural Induction
	Slide 12: Structural Induction Template
	Slide 13: Wait a minute! Why can we do this?
	Slide 14: Weak Induction is a special case of Structural
	Slide 15: Strings
	Slide 16: Strings
	Slide 17: Functions on Strings
	Slide 18: Claim: len(xdoty)=len(x) + len(y) for all x ,y element of cap sigma to the asterisk operator .
	Slide 19: Claim: len(xdoty)=len(x) + len(y) for all x ,y element of cap sigma to the asterisk operator .
	Slide 20: Claim: len(xdoty)=len(x) + len(y) for all x ,y element of cap sigma to the asterisk operator .
	Slide 21: Claim: len(xdoty)=len(x) + len(y) for all x ,y element of cap sigma to the asterisk operator .
	Slide 22: Claim: len(xdoty)=len(x) + len(y) for all x ,y element of cap sigma to the asterisk operator .
	Slide 23: Claim: len(xdoty)=len(x) + len(y) for all x ,y element of cap sigma to the asterisk operator .
	Slide 24: More Structural Sets
	Slide 25: Functions on Binary Trees
	Slide 26: Structural Induction on Binary Trees

