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Relations And Graphs

CSE 311 Winter 2023
Lecture 21




Announcements

Post on Ed about grades.

If you want to talk to me 1.1 there’s a link to sign up at the bottom of
that post.



Relations

Relations

A (binary) relation from A to B is a subset of A X B
A (binary) relation on A is a subset of A x 4

Wait what? KZZ < 'Z/

< is a relation OrLZ,}
"3 < 4“Is a way of saying "3 relates to 4" (for the < relation)
(3,4) is an element of the set that defines the relation.



Relations, Examples

It turns out, they've been here the whole time

< on R is a relation
le. {(x,y) : x <yandx,y € R}
= on X* is a relation

l.e. {(x,y):x=yand x,y € L*}
For your favorite function f, you can define a relation from its domain to

its co-domain

e (G f=y “}5
“x when squared gives y” is a relation

e {(x,y):x* =y,x,y € R}



More Relations

R, ={(a,1),(a,2),(b,1),(b,3),(c,3)}
s a relation (you can define one just by listing what relates to what)

Equivalence mod 5 is a relation.

{(x,y) : x = y(mod 5)}
We'll aIso\sray“mg_e/s to y if and only if they're congruent mod 5"
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What do we do with relations? Usually we prove properties about them.

—
Symmetry

A binary relation R on a set S is “symmetric” iff
foralla,b € S, [(a,b) € R — (b,a) € R]
T —onZtis symmetric, for all a,b € £* if a = b then ;— a. -~ \—/

r____ is not symmetric on P(U) —{1,2,3} < {1,2,3,4} but {1,2,3,4} £ {1,2,3}

Transitivity
A binary relation R on a set S is “transitive” iff
forall a,b,c €S, [(a,b) € R A (b, c)eR—>(a C)ER]

- —
)-/ = on X" is transitive, for all a,b,c € X" if a = b and b = c then a = c.
C is transitive on P(U) — for any sets A,B,Cif A Band B € C then A C C.
\./-)> € is not a transitive relation — 1 € {1,2,3}, {1,2,3} € P({1,2,3}) but 1 ¢ P({1,2,3}).




Warm up

Show thata = b (mocig) if and only if b = a(mod n)

aEb(modn)<—>n|(b—a)<—>nk=b—am*W

n(—k) =a —b(for —ke€Z) o n|(a—b) & b = a(mod n)

This was a proof that the relation {(a, b) : a = b(mod n)} is symmetric!

It was actually overkill to show if and only if. Showing just one direction
turns out to be enough!

this is the form of the division theorem for (a — n)%n. Since the division
theorem guarantees a unique integer, (a — n)%n = (a%n)



What about transitivity?

3. GCD proof [12 points]

Let x, y, z be arbitrary integers such m @v the following questions, if the statement is true, write a

proof. If it is false, disprove it (you will provide a coutiterexample in that case).

(b) Is it true t@nluﬁﬂn:

[

Yes. By definition of divides, we know there is some integer k such that y = kz. Similarly, there is some
integer j such that z = jy. From here we note that z = j(kz). Since integers closed under multiplication
we know that j*k is an integer thus z = (jk)z for some integer j*k so by definition of divides z|z.

This was a proof that divides is a transitive relation!



—
More Properties of relations—) — =

What do we do with relations? Usually we prove properties about them.
-

Antisymmetry

A binary relation R on a set S is “antisymmetric” iff
| foralla,be s, [(a,b) e RNa+ b — (b,a) ¢ R]

< is antisymmetric on Z
—————

Reflexivity

A binary relation R on a set S is “reflexive” iff
foralla € S, [(a,a) € R]
.~

<

< is reflexive on Z



You've proven antisymmetry too!

(a) Prove thatif a | band b | a, where a and b are integers, thena = bora = —b.

Solution:

Suppose that a | b and b | a, where a, b are integers. By the definition of divides, we have a # 0, b # 0 and
b = ka,a = jb for some integers k, j. Combining these equations, we see that a = j(ka).

Then, dividing both sides by a, we get 1 = jk. So, % = k. Note that j and k are integers, which is only
possible if j, k € {1, —1}. It follows that b = —a or b = a.

Antisymmetry

A binary relation R on a set S is “antisymmetric” iff
foralla,be s, [(a,b) e RNa+ b — (b,a) ¢ R]
You showed | is antisymmetric on Z* | |

foralla,b €S, [(a,b) € RA(b,a) €ER - a = b] is gquivalent to the
ﬁ e (CMTaYY:

The box version is easier to understand, the other version is usually
easlier to prove.




Try a few of your own Ol bk

Decide whether each of these relations are B\ B 3 _ 3 \ =
/

Reflexive, symmetric, antisymmetric, and

transitive.

c
= On P(U) ( Symmetry: forall a,b € S, [(a,b) € R — (b,a) € R]
= on Z ( Antisymmetry: forall a,b € S, [(a,b) E RAa # b — (b,a) € R]
>on R [

A\Oﬂ Z+ T/R/#Y Reflexivity: for all a € S, [(a, a) € R]
| on Z _l// (R

= (mod
= meedent s 1R

(f




Decide whether each of these relations are

Reflexive, symmetric, antisymmetric, and
transitive.

C on P(U) reflexive, antisymmetric, transitive

> on Z reflexive, antisymmetric, transitive

> on R antisymmetric, transitive

-—%

| on Z7 reflexive, antisymmetric, transitive
| on Z reflexive, transitive

= (mod 3) on Z reflexive, symmetric, transitive
=

Transitivity: for all a,b,c € S,
[(a,b) e RA(b,c) ER - (a,c) € R]

Reflexivity: for all a € S, [(a, a) € R]




YD = A
How Do symmetry and antisymmetry relate?

ﬁere are relations that are neither symmetric nor antisymmetr/ic]
For example R = {(1 2), (2 1), (1,3 )j
(1,2), (2,1) say you ‘can't be anUsyke_mc ( U EX
(1,3) [without (3,1)] says you can't be symmetric.

tfw It the implications are vacuous.

A relati |I<e {(1,1), (2, 2) (3, 3)} IS vacuously symmetric AND
antisymm : sfations ar are rar y seen though. Once you have
x,y where x # y and (x,y) € R the relation cannot be both.

But you can onl




Two Prototype Relations

__A lot of fundamental relations follow one of two prototypes:

Equivalence Relation

A relation that is reflexive, symmetric, and transitive is
called an “equivalence relation”

Partial Order Relation

A relation that is reflexive, antisymmetric, and transitive is
called a “partial order”




Equivalence Relations

Equivalence relations “act kinda like equals”
= (mod n) is an equivalence relation.
= on compound propositions is an equivalence relation.

Fun fact: Equivalence relations “partition” their elements.

An equivalence relation R on S divides § into sets S, ... S§ such that.
Vs (s € S; for some i)

Vs,s' (s,s' € S; forsomeiifandonlyif (s,s’) €R)

SinS; =0 foralli #j



Partial Orders

Partial Orders “behave kinda like less than or equal to”

In the sense that they put things in order

But it's only kinda like less than — it's possible that some elements can't
be compared.

| on Z7 is a partial order

C on P(U) is a partial order
x IS a prerequisite of (or-equal-to) y is a partial order on CSE courses



Why Bother?

If you prove facts about all equivalence relations or all partial orders,
you instantly get facts in lots of different contexts.

If you learn to recognize partial orders or equivalence relations, you can
get a lot of intuition for new concepts in a short amount of time.

Why now? We'll want relations over the next few weeks (and it's a
convenient way to review proving implications, for all statements, and

SO On)






Directead Gl:aB__lls (u \/>

G =(V,E)
V is a set of vertices (an underlying set of element

E is a set of edges (ordered pairs of vertices; i.e. connections from one
o the next). -

Path vy, vy, ..., Vg such that (v;,v;;1) EE
Simple Path: path with all v; distinct \
Cycle: path with vy = v, (and k > 0) < -
. simple path plus edge
(v, Vo) With k > 0 \/




Directed Graphs

G =(V,E)
V is a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next). U
ok

Path vy, vy, ..., Vg such that (v;,v;;1) EE
Simple Path: path with all v; distinct
Cycle: path with vy = v, (and k > 0)
. simple path plus edge
(v, Vo) With k > 0




Directed Graphs

G =(V,E)
V is a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).
N 2

Path vy, vy, ..., Vg such that (v;,v;;1) EE

Simple Path: path with all v; distinct \\!/

Cycle: path with vy = v, (and k > 0) V
: sir‘n‘mﬁﬁéﬁh plus edge S

(v, Vo) With k > 0

N\



Directed Graphs

G =(V,E)
V is a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path vy, vy, ..., Vg such that (v;,v;;1) EE
. path with all v; distinct
Cycle: path with vy = v, (and k > 0)
. simple path plus edge
(vi, Vo) With k > 0




I~ Lecture-Only Content

Relations and Graphs



More Relations and Graphs

The rest of this deck is a little more on:
)j%elations, specifically combining them together
Graphs, specifically representing relations as graphs.

7~

We're going to go through it very fast. We won't have homework or
exam questions on anything in this section of the deck.

But it is stuff you should see at least once because it might come back
in future classes.



Combining Relations

Given a relation R from A to B b S
And a relation SCfFom B to C, 5
==

The relation S e R from A to C is
{(a,c) : 3b[(a,b) € R A (b, c) € S]} S o R

..-——f.s’

Yes, | promise |t@not R o § — it makes mor sense If you think

about relations (x, f(x)) and (x, g(x))
S w\mﬁmgﬁx

But also don't spend a ton of gle about the order, we
almost always care about R o R, where order doesn't matter.



Combining Relations

To combine relations, it's a lot easier if we can see what's happening.

We'll use a representation of a directed graph



Representing Relations Q P

P

To represent a relation R on a set A have a vertex for each element of A
and have an edge (a, b) for every pair in R.

_—

Let A be {1,2,3,4} and R be {@, (&E)J (Zﬂ (2,3),(3,4)}




Combining Relations

Its =1{(2,2),(2,3),(3,1)}and R ={(1,2),(2,1),(1,3)}
Compute S o R i.e. every pair (a c) with a b with (a,b) € R and (b c)ES

) @W( RS

:@‘Q CX& Q)éSoK




Combining Relations

ItS =1{(2,2),(2,3),(3,1)}and R={(1,2),(2,1),(1,3)}
Compute S o R i.e. every pair (a,c) with a b with (a,b) € R and (b,c) €S

o9 Co—e,
N 1\.3



Let R be a relation on A.
Define R? as {(a,a) : a E A
& {LJ) - A}

R

Combining Relations %
>y Q&g C

Rk =Rk—1OR

SE— L— —
(a,b) € R* if and only if there is a path of length k from a to b in R.
We can find that on the graph!



More Powers of R.

For two vertices in a graph, a can reach b if there is a path from a to b.

Let R be a relation on the set A. The connectivity relation R* consists of
all pairs (a, b) such that a can reach b (i.e. there is a path from a to b in

R —_—

»/
(e

Note we're starting from 0 (the textbook makes the unusual choice of
starting from k = 1).



What's the point of R*

R* is also the “reflexive-transitive closure of R
—_ ——

It answers the question “what's the minimum amount of edges | would
need to add to R to make it reflexive and transitive?”

Why care about that? The transitive-reflexive closure can be a summary
of data — you might want to prec it SO you can easily checkifa

can reach b instead of recomputing it every time.



Relations and Graphs

e ————

Describe how each property will show up in the graph of a relation.

(Reflexive %

C Symmetric @@ @
 Antisymmetric
& O O

[ Transitive

S~




Relations and Graphs

Describe how each property will show up in the graph of a relation.

// Reflexive

- Every vertex has a “self-loop” (an edge from the vertex to itself)

Antisymmetric
No edge has its “reverse edge” (going the other way) also in the graph.

Symmetric
Every edge has its “reverse edge” (going the other way) also in the graph.

{'Transitive

If there’s a length-2 path from a to b then there’s a direct edge from a to b



