Try a few of your own

Decide whether each of these relations are

Reflexive, symmetric, antisymmetric, and transitive.

 \subseteq on $\mathcal{P}(\mathcal{U})$

 \geq on \mathbb{Z}

> on \mathbb{R}

 \mid on \mathbb{Z}^+

 \mid on \mathbb{Z}

 $\equiv (mod \ 3) \ \text{on} \ \mathbb{Z}$

Symmetry: for all $a, b \in S$, $[(a, b) \in R \rightarrow (b, a) \in R]$

Antisymmetry: for all $a, b \in S$, $[(a, b) \in R \land a \neq b \rightarrow (b, a) \notin R]$

Transitivity: for all $a, b, c \in S$, $[(a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R]$

Reflexivity: for all $a \in S$, $[(a, a) \in R]$

Two Prototype Relations

A lot of fundamental relations follow one of two prototypes:

Equivalence Relation

A relation that is reflexive, symmetric, and transitive is called an "equivalence relation"

Partial Order Relation

A relation that is reflexive, antisymmetric, and transitive is called a "partial order"

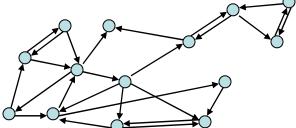
Directed Graphs

G = (V, E)

V is a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_0, v_1, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ Simple Path: path with all v_i distinct Cycle: path with $v_0 = v_k$ (and k > 0) Simple Cycle: simple path plus edge (v_k, v_0) with k > 0



Combining Relations

If $S = \{(2,2), (2,3), (3,1)\}$ and $R = \{(1,2), (2,1), (1,3)\}$ Compute $S \circ R$ i.e. every pair (a,c) with a b with $(a,b) \in R$ and $(b,c) \in S$

